Volume 20, Issue 4 (April 2020)                   Modares Mechanical Engineering 2020, 20(4): 1063-1077 | Back to browse issues page

XML Persian Abstract Print


1- , moradi@malayeru.ac.ir
Abstract:   (2404 Views)
Additive manufacturing in the modern world is progressing significantly, resulting in special applications in engineering sciences, medicine, and art. When the MIT university mixed the concept of time in the 3D printing process, time was considered as the fourth dimension. By combining the fourth dimension, the time, the smart materials made of additive manufacturing are able to a reaction to the external motivations (heat, voice, impact, etc) within a specified time. In the 4D printing process, the material configuration will be converted to a converter that will be exposed to external motivation such as heat, water, chemicals, electrical current and magnetic energy. It is expected that in the future, this technology will be widely used, requiring the application of various engineering disciplines, including mechanical engineering, in the fabrication and production of objects, because the overall perspective of the 4-D printing process is to make intelligent materials that are optimized using computational challenges and empirical knowledge. In this article, after reviewing the 3D printing and introducing smart materials, the issue of 4D printing has been investigated using this material. The mechanism, challenges, applications, and future of 4D printing has been discussed.
Full-Text [PDF 1947 kb]   (1406 Downloads)    
Article Type: Systematic Review | Subject: Build add-on
Received: 2018/12/30 | Accepted: 2019/08/24 | Published: 2020/04/17

References
1. Bodaghi M, Damanpack AR, Liao WH. Self-expanding/shrinking structures by 4D printing. Smart Materials and Structures, 2016;25(10):105034. [Link] [DOI:10.1088/0964-1726/25/10/105034]
2. Forterre Y, Skotheim JM, Dumals J, Mahadevan L. How the Venus flytrap snaps. Nature. 2005;433:421-425. [Link] [DOI:10.1038/nature03185]
3. Song K, Yeom E, Lee SJ. Real-time imaging of pulvinus bending in Mimosa pudica. Scientific Reports. 2014;4:6466. [Link] [DOI:10.1038/srep06466]
4. Pei E. 4D Printing: Dawn of an emerging technology cycle. Assembly Automation. 2014;34(4):310-314. [Link] [DOI:10.1108/AA-07-2014-062]
5. Kwok TH, Wang CCL, Deng D. Four-dimensional printing for freeform surfaces: Design optimization of origami and kirigami structures. Journal of Mechanical Design. 2015;137(11):111413-111423. [Link] [DOI:10.1115/1.4031023]
6. ASTM. F2792−12a, Standard Terminology for additive manufacturing technologies [Internet]. Pennsylvania: ASTM International; 2013 [Unknown cited]. Available from: https://web.mit.edu/2.810/www/files/readings/AdditiveManufacturingTerminology.pdf [Link]
7. Mota R, Silva E, Lima F, Menezes L, Thiele ACS. 3D printed scaffolds as a new perspective for bone tissue regeneration: Literature review. Materials Sciences and Applications. 2016;7(8):430-452. [Link] [DOI:10.4236/msa.2016.78039]
8. Moradi M, Meiabadi S, Kaplan A. 3D Printed parts with honeycomb internal pattern by fused deposition modelling, experimental characterization and production optimization. Metals and Materials International. 2019;25:1312-1325. [Link] [DOI:10.1007/s12540-019-00272-9]
9. Bikas H, Stavropoulos P, Chryssolouris G. Additive manufacturing methods and modelling approaches: A critical review. The International Journal of Advanced Manufacturing Technology. 2016;83:389-405. [Link] [DOI:10.1007/s00170-015-7576-2]
10. Chua CK, Wong CH, Yeong WY. Standards, quality control, and measurement sciences in 3D printing and additive manufacturing. 1st Edition. Amsterdam: Elsevier; 2017. [Link] [DOI:10.1016/B978-0-12-813489-4.00001-5]
11. Moradi M, Karami Moghadam M, Shamsborhan M, Bodaghi M. The synergic effects of FDM 3D printing parameters on mechanical behaviors of bronze poly lactic acid composites. Journal of Composites Science. 2020;4(1):17. [Link] [DOI:10.3390/jcs4010017]
12. Tan JH, Sing SL, Yeong WY. Microstructure modelling for metallic additive manufacturing: A review. Virtual and Physical Prototyping. 2019;15(1):87-105. [Link] [DOI:10.1080/17452759.2019.1677345]
13. Casalino, G, Moradi M, Moghadam MK, Khorram A, Perulli P. Experimental and numerical study of AISI 4130 steel surface hardening by pulsed Nd:YAG laser. Materials. 2019;12(19):3136. [Link] [DOI:10.3390/ma12193136]
14. Leo DJ. Engineering analysis smart material systems. Hoboken: Wily; 2007. pp.1-23. [Link] [DOI:10.1002/9780470209721.ch1]
15. Uchino K. Advanced Piezoelectric Materials. Sawston: Woodhead Publishing; 2010. P.p. 1-85. [Link] [DOI:10.1533/9781845699758.1]
16. Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, et al. Stimulus-responsive shape memory materials: A review. Material & Design. 2012;33:577-640. [Link] [DOI:10.1016/j.matdes.2011.04.065]
17. Lang SB, Muensit S. Review of some lesser-known applications of piezoelectric and pyroelectric polymers. Applied Physics A. 2006;85:125-134. [Link] [DOI:10.1007/s00339-006-3688-8]
18. Aïssa B, Therriault D, Haddad E, Jamroz W. Self-healing materials systems: Overview of major approaches and recent developed technologies. Advances Material Science and Engineering. 2012;2012:Article ID 854203. [Link] [DOI:10.1155/2012/854203]
19. Muscat S, Stojceski F, Danani A. Elucidating the effect of static electric field on Amyloid Beta 1-42 supramolecular assembly. Journal of Molecular Graphics and Modelling. 2020;96:107535. [Link] [DOI:10.1016/j.jmgm.2020.107535]
20. Huang WM, Ding Z, Wang CC, Wei J, Zhao Y, Purnawali H. Shape memory materials. Material Today. 2010;13(7-8):54-61. [Link] [DOI:10.1016/S1369-7021(10)70128-0]
21. Zeng Z, Oliveira JP, Ao S, Zhang W, Cui J, Yan S, et al. Fabrication and characterization of a novel bionic manipulator using a laser processed NiTi shape memory alloy. Optics & Laser Technology. 2020;122:105876. [Link] [DOI:10.1016/j.optlastec.2019.105876]
22. Otsuka K, Ren X. Recent developments in the research of shape memory alloys. Intermetallics. 1999;7(5):511-528. [Link] [DOI:10.1016/S0966-9795(98)00070-3]
23. Paul DI, McGehee W, O'Handley RC, Richard M. Ferromagnetic shape memory alloys: A theoretical approach. Journal of Applied Physics. 2007;101(12):123917. [Link] [DOI:10.1063/1.2740328]
24. Planes A, Mañosa L. Ferromagnetic shape-memory alloys. Material Science Forum. 2006;512:145-152. [Link] [DOI:10.4028/www.scientific.net/MSF.512.145]
25. Raasch J, Ivey M, Aldrich D, Nobes DS, Ayranci C. Characterization of polyurethane shape memory polymer processed by material extrusion additive manufacturing. Additive Manufacturing. 2015;8:132-141. [Link] [DOI:10.1016/j.addma.2015.09.004]
26. Miaudet P, Derré A, Maugey M, Zakri C, Piccione PM, Inoubli R, et al. Shape and temperature memory of nanocomposites with broadened glass transition. Science. 2007;318(5854):1294-1296. [Link] [DOI:10.1126/science.1145593]
27. Liu C, Qin H, Mather PT. Review of progress in shape-memory polymers. Journal of Materials Chemistry. 2007;17:1543-1558. [Link] [DOI:10.1039/b615954k]
28. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428:487-492. [Link] [DOI:10.1038/nature02388]
29. Liu F, Urban MW. Recent advances and challenges in designing stimuli-responsive polymers. Progress in Polymer Science. 2010;35(1-2):3-23. [Link] [DOI:10.1016/j.progpolymsci.2009.10.002]
30. Lu F, Chen T, Xiang K, Wang Y. Ionic electro-active polymer actuator based on cobalt-containing nitrogen-doped carbon/conducting polymer soft electrode. Polymer Testing. 2020;84:106413. [Link] [DOI:10.1016/j.polymertesting.2020.106413]
31. Kruusamäe K, Mukai K, Sugino T, Asaka K. Impact of viscoelastic properties on bucky-gel actuator performance. Journal of Intelligent Material Systems Structure. 2014;25(18):2235-2245. [Link] [DOI:10.1177/1045389X14538538]
32. Osada Y, Matsuda A. Shape memory in hydrogels. Nature. 1995;376:219. [Link] [DOI:10.1038/376219a0]
33. Tobushi H, Pieczyska E, Ejiri Y, Sakuragi T. Thermomechanical properties of shape-memory alloy and polymer and their composites. Mechanics Advanced Material Structure. 2009;16(3):236-247. [Link] [DOI:10.1080/15376490902746954]
34. Hofmann DC. Shape memory bulk metallic glass composites. Science. 2010;329(5997):1294-1295. [Link] [DOI:10.1126/science.1193522]
35. Wu J, Yuan C, Ding Z, Isakov M, Mao Y, Wang T, et al. Multi-shape active composites by 3D printing of digital shape memory polymers. Scientific Reports. 2016;6:24224. [Link] [DOI:10.1038/srep24224]
36. Ge Q, Qi HJ, Dunn ML. Active materials by four-dimension printing. Applied Physics Letter. 2013;103:131901. [Link] [DOI:10.1063/1.4819837]
37. Behl M, Razzaq MY, Lendlein A. Multifunctional shape-memory polymers. Advance Material. 2010;22(31):3388-3410. [Link] [DOI:10.1002/adma.200904447]
38. Weiss RA, Izzo E, Mandelbaum S. New design of shape memory polymers: Mixtures of an elastomeric ionomer and low molar mass fatty acids and their salts. Macromolecules. 2008;41(9):2978-2980. [Link] [DOI:10.1021/ma8001774]
39. Dickey MD. Hydrogel composites: Shaped after print. Nature Materials. 2016;15:379-380. [Link] [DOI:10.1038/nmat4608]
40. Wang S, Lee JM, Yeong WY. Smart hydrogels for 3D bioprinting. International Journal of Bioprinting. 2015;1(1):3-14. [Link] [DOI:10.18063/IJB.2015.01.005]
41. Bogue R. Smart materials: A review of capabilities and applications. Assembly Automation. 2014;34(1):16-22. [Link] [DOI:10.1108/AA-10-2013-094]
42. Uchino K. Antiferroelectric shape memory ceramics. Actuators. 2016;5(2):11. [Link] [DOI:10.3390/act5020011]
43. Huang WM, Yang B, Fu YQ. Polyurethane shape memory polymers. Boca Raton: CRC Press; 2011. [Link] [DOI:10.1201/b11209]
44. Yang B, Huang WM, Li C, Chor JH. Effects of moisture on the glass transition temperature of polyurethane shape memory polymer filled with nano-carbon powder. European Polymer Journal. 2005;41(5):1123-1128. [Link] [DOI:10.1016/j.eurpolymj.2004.11.029]
45. Leng J, Lan X, Liu Y, Du S. Shape-memory polymers and their composites: Stimulus methods and applications. Progress in Material Science. 2011;56(7):1077-1135. [Link] [DOI:10.1016/j.pmatsci.2011.03.001]
46. Mao Y, Ding Z, Yuan C, Ai S, Isakov M, Wu J, et al. 3D printed reversible shape changing components with stimuli responsive materials. Scientific Reports. 2016;6:24761. [Link] [DOI:10.1038/srep24761]
47. Raviv D, Zhao W, McKnelly C, Papadopoulou A, Kadambi A, Shi B. Active printed materials for complex selfevolving deformations. Scientific Reports. 2014;4:7422. [Link] [DOI:10.1038/srep07422]
48. Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nature Materials. 2016;15:413-418. [Link] [DOI:10.1038/nmat4544]
49. Tibbits S. 4D printing: Multi-material shape change. Architectural Design. 2014;84(1):116-121. [Link] [DOI:10.1002/ad.1710]
50. Hoa SV, Cai X. Twisted composite structures made by 4D printing method. Composite Structures. 2020;238:111883. [Link] [DOI:10.1016/j.compstruct.2020.111883]
51. Choong YYC, Maleksaeedi S, Eng H, Wei J, Su PC. 4D printing of high performance shape memory polymer using stereolithography. Materials & Design. 2017;126:219-225. [Link] [DOI:10.1016/j.matdes.2017.04.049]
52. Yu K, Dunn ML, Qi HJ. Digital manufacture of shape changing components. Extreme Mechanics Letters. 2015;4:9-17. [Link] [DOI:10.1016/j.eml.2015.07.005]
53. Zhang Q, Zhang K, Hu G. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Scientific Reports. 2016;6:22431. [Link] [DOI:10.1038/srep22431]
54. Kuksenok O, Balazs AC. Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers. Materials Horizons. 2016;3:53-62. [Link] [DOI:10.1039/C5MH00212E]
55. Bakarich SE, Gorkin R, Panhuis MIH, Spinks GM. 4D printing with mechanically robust, thermally actuating hydrogels. Macromolecular Rapid Communication. 2015;36(12):1211-1217. [Link] [DOI:10.1002/marc.201500079]
56. Zuluaga DC, Menges A. 3D printed hygroscopic programmable material systems. Materials Research Society Proceeding. 2015;1800:24-31. [Link] [DOI:10.1557/opl.2015.644]
57. Teoh JEM, Zhao Y, An J, Kai Chua C, Liu Y. Multi-stage responsive 4D printed smart structure through varying geometric thickness of shape memory polymer. Smart Material Structure. 2017;26(12):125001. [Link] [DOI:10.1088/1361-665X/aa908a]
58. Zhou Y, Huang WM, Feng Kang S, Lian Wu X, Lu HB, Fu J, et al. From 3D to 4D printing: Approaches and typical applications. Journal of Mechanical Science and Technology. 2015;29:4281-4288. [Link] [DOI:10.1007/s12206-015-0925-0]
59. Momeni F, Hassani SMM, Liu X, Ni J. A review of 4D printing. Materials & Design. 2017;122:42-79. [Link] [DOI:10.1016/j.matdes.2017.02.068]
60. Lv H, Leng J, Liu Y, Du S. Shape-memory polymer in response to solution. Advanced Engineering Materials. 2008;10(6):592-595. [Link] [DOI:10.1002/adem.200800002]
61. Tibbits S, Cheung K. Programmable materials for architectural assembly and automation. Assembly Automation. 2012;32(3):216-225. [Link] [DOI:10.1108/01445151211244348]
62. Khoo ZX, Teoh JEM, Liu Y, Chua CK, Yang S, An J. 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping. 2015;10(3):103-122. [Link] [DOI:10.1080/17452759.2015.1097054]
63. Lee AY, An J, Chua CK. Two-Way 4D Printing: A review on the reversibility of 3D-printed shape memory materials. Engineering. 2017;3(5):663-674. [Link] [DOI:10.1016/J.ENG.2017.05.014]
64. Naficy S, Gately R, Gorkin R, Xin H, Spinks GM. 4D printing of reversible shape morphing hydrogel structures. Macromolecular Materials and Engineering. 2017;302(1):1600212. [Link] [DOI:10.1002/mame.201600212]
65. Miao S, Zhu W, Castro NJ, Nowicki M, Zhou X, Cui H, et al. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Scientific Reports. 2016;6:27226. [Link] [DOI:10.1038/srep27226]
66. Zhao T, Yu R, Li X, Chenga B, Zhang Y, Yang X, et al. 4D printing of shape memory polyurethane via stereolithography. European Polymer Journal. 2018;101:120-126. [Link] [DOI:10.1016/j.eurpolymj.2018.02.021]
67. Yang Y, Yuan W, Zhang X, Yuan Y, Wang C, Ye Y, et al. Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries. Applied Energy. 2020;257:114002. [Link] [DOI:10.1016/j.apenergy.2019.114002]
68. Zhang Q, Yan D, Zhang K, Hu G. Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique. Scientific Reports. 2015;5:8936. [Link] [DOI:10.1038/srep08936]
69. Sitthi-amorn P, Ramos J, Yuwang W, Kwan J, Lan J, Wang w, et al. MultiFab : A machine vision assisted platform for multi-material 3D printing. ACM Transactions Graphics. 2015;34(4):1-11. [Link] [DOI:10.1145/2766962]
70. Boparai KS, Singh R, Singh H. Development of rapid tooling using fused deposition modeling: a review. Rapid Prototyping Journal. 2016;22(2):281-299. [Link] [DOI:10.1108/RPJ-04-2014-0048]
71. Mirzaali MJ, de la Nava AH, Gunashekar D, Nouri-Goushki M, Veeger RP, Grossman Q, et al. Mechanics of bioinspired functionally graded soft-hard composites made by multi-material 3D printing. Composite Structures. 2020;237:111867. [Link] [DOI:10.1016/j.compstruct.2020.111867]
72. Sossou G, Demoly F, Belkebir H, Jerry Qi H, Gomes S, Montavon G. Design for 4D printing: A voxel-based modeling and simulation of smart materials. Materials & Design. 2019;175:107798. [Link] [DOI:10.1016/j.matdes.2019.107798]
73. Kokkinis D, Schaffner M, Studart AR. Multimaterial magnetically assisted 3D printing of composite materials. Nature Communication. 2015;6:8643. [Link] [DOI:10.1038/ncomms9643]
74. Zarek M, Layani M, Eliazar S, Mansour N, Cooperstein I, Shukrun E. 4D printing shape memory polymers for dynamic jewellery and fashionwear. Virtual Physical Prototyping. 2016;11(4):263-270. [Link] [DOI:10.1080/17452759.2016.1244085]
75. Chiu WK, Yu KM. Direct digital manufacturing of three-dimensional functionally graded material objects. Computer-Aided Design. 2008;40(12):1080-1093. [Link] [DOI:10.1016/j.cad.2008.10.002]
76. Kontodina T, Tzetzis D, Davim JP, Kyratsis P. 5. Additive manufacturing for patient-specific medical use. In Paulo Davim J, editor. Additive and Subtractive Manufacturing: Emergent Technologies. Boston: De Gruyter; 2019. [Link] [DOI:10.1515/9783110549775-005]
77. Bodaghi M, Serjouei A, Zolfagharian A, Fotouhi M, Hafizur R, Durand D. Reversible energy absorbing meta-sandwiches by 4D FDM Printing. International Journal of Mechanical Sciences. 2020;173:105451. [Link] [DOI:10.1016/j.ijmecsci.2020.105451]
78. Soltani A, Noroozi R, Bodaghi M, Zolfagharian A, Hedayati R. 3D printing on-water sports boards with bio-inspired core designs. Polymers 2020;12(1):250. [Link] [DOI:10.3390/polym12010250]
79. Chung S, Song SE, Cho YT. Effective software solutions for 4D printing: A review and proposal. International Journal Precision Engineering Manufacturing-Green Technology. 2017;4:359-371. [Link] [DOI:10.1007/s40684-017-0041-y]
80. Felton SM, Tolley M, Shin B, Onal CD. Self-folding with shape memory composites. Soft Matterials. 2013;9(32):1-7. [Link] [DOI:10.1039/c3sm51003d]
81. Ivanova O, Elliott A, Campbell T, Williams CB. Unclonable security features for additive manufacturing. Additive Manufacturing. 2014;1-4:24-31. [Link] [DOI:10.1016/j.addma.2014.07.001]
82. Zolfagharian A, Kouzani AZ, Khoo SY, AmiriMoghadam AA, Gibson I, Kaynak A. Evolution of 3D printed soft actuators. Sensors Actuators A: Physical. 2016;250:258-272. [Link] [DOI:10.1016/j.sna.2016.09.028]
83. Momeni F, Ni J. Nature-inspired smart solar concentrators by 4D printing. Renew Energy. 2018;122:35-44. [Link] [DOI:10.1016/j.renene.2018.01.062]
84. Momeni F, Sabzpoushan S, Valizadeh R, Morad MR, Liu X, Ni J. Plant leaf-mimetic smart wind turbine blades by 4D printing. Renew Energy. 2019;130:329-351. [Link] [DOI:10.1016/j.renene.2018.05.095]
85. An J, Chua CK, Mironov V. A perspective on 4D bioprinting. International Journal Bioprinting. 2016;2(1):3-5. [Link] [DOI:10.18063/IJB.2016.01.003]
86. Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML. Multimaterial 4D printing with tailorable shape memory polymers. Scientific Reports. 2016;6:31110. [Link] [DOI:10.1038/srep31110]
87. Kuribayashi K, Tsuchiya K, You Z, Tomus D, Umemoto M, Ito T. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Materials Scientific Engineering: A. 2006;419(1-2):131-137. [Link] [DOI:10.1016/j.msea.2005.12.016]
88. Mironov V. 4D Bioprinting: Biofabrication of rod-like and tubular tissue engineered constructs using programmable self-folding bioprinted biomaterials. International Bioprinting Congress, 24-25 July 2014, Biopolis, Singapore. Singapore: International Bioprinting Congress; 2014. [Link]
89. Morrison RJ, Hollister SJ, Niedner MF, Ghadimi Mahani M, Park AH, Mehta DK, et al. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Science Translational Medicine. 2015;7(285):285ra64. [Link] [DOI:10.1126/scitranslmed.3010825]
90. Ashammakhi N, Ahadian S, Zengjie F, Suthiwanich K, Lorestani F, Orive G, et al. Advances and future perspectives in 4D bioprinting. Biotechnology Journal. 2018;13(12):e1800148. [Link] [DOI:10.1002/biot.201800148]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.