Volume 19, Issue 11 (November 2019)                   Modares Mechanical Engineering 2019, 19(11): 2781-2791 | Back to browse issues page

XML Persian Abstract Print


1- Physic Department, Basic Science Faculty, Khatam al-Anbia University, Tehran, Iran
2- Materials & Metallurgical Engineering Department, Engineering Faculty, University of Bonab, Bonab, Iran , b.binesh@bonabu.ac.ir
3- Polymer Engineering Department, Engineering Faculty, University of Bonab, Bonab, Iran
Abstract:   (5324 Views)
In this research, semi-constrained groove pressing (SCGP) as one of the severe plastic deformation techniques was investigated to achieve an ultrafine-grained structure in interstitial free steel sheets. The maximum of four semi-constrained groove pressing passes was successfully applied on the samples and the effects of the number of SCGP passes on the microstructure and mechanical properties of the samples were investigated. The microstructural investigations of the deformed specimens indicate that the semi-constrained groove pressing can effectively reduce the grain/crystallite size so that it ranges from about 41 μm in annealed condition to 232 nm after four passes. The results also showed that the strength and hardness of the samples are increased significantly by applying the pressing process. The highest tensile and yield strengths were observed in the two-pass SCGP processed sample, which showed an increase of about 90% and 75%, respectively, compared to the initial sample. The maximum hardness value of 165 Vickers was obtained for a three-pass SCGP processed sample, which is about 68% higher than the annealed sample. Regarding the hardness tests results, the uniformity of deformation increased with increasing the number of SCGP passes. Finite element method was used to simulate the semi-constrained groove pressing, and the strain distribution was obtained for the deformed samples. The finite element simulation results correlated fairly well with the analytical results.
Full-Text [PDF 1709 kb]   (2139 Downloads)    
Article Type: Original Research | Subject: Forming of metal sheets
Received: 2019/02/5 | Accepted: 2019/05/21 | Published: 2019/11/21

References
1. Valiev RZ, Nazarov AA. Bulk nanostructured materials by SPD processing: techniques, microstructures and properties. In: Zehetbauer MJ, Zhu YT, editors. Bulk nanostructured materials. Weinheim, Germany: Wiley-VCH Verlag; 2009. pp. 21-46. [Link] [DOI:10.1002/9783527626892.ch2]
2. Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science. 2000;45(2):103-190. [Link] [DOI:10.1016/S0079-6425(99)00007-9]
3. Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: Fundamentals and applications. Progress in Materials Science. 2008;53(6):893-979. [Link] [DOI:10.1016/j.pmatsci.2008.03.002]
4. Dieter GE. Mechanical metallurgy. 3rd Edition. New York: Mc Graw‐Hill Book Co.; 1986. pp. 158-186. [Link]
5. Gupta AK, Maddukuri TS, Singh SK. Constrained groove pressing for sheet metal processing. Progress in Materials Science. 2016;84:403-462. [Link] [DOI:10.1016/j.pmatsci.2016.09.008]
6. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zechetbauer MJ, Zhu YT. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM. 2006;58(4):33-39. [Link] [DOI:10.1007/s11837-006-0213-7]
7. Mashhadi Keshtiban P, Zadshakouyan M, Faraji G. Optimization of geometrical parameters of equal channel multi-angular pressing process. Modares Mechanical Engineering. 2016;16(2):275-282. [Persian] [Link]
8. Zhilyaeva AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG. Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Materialia. 2003;51(3):753-765. [Link] [DOI:10.1016/S1359-6454(02)00466-4]
9. Babaei A, Mashhadi MM. Tubular pure copper grain refining by tube cyclic extrusion-compression (TCEC) as a severe plastic deformation technique. Progress in Natural Science: Materials International. 2014;24(6):623-630. [Link] [DOI:10.1016/j.pnsc.2014.10.009]
10. Beygelzimer Y, Varyukhin V, Orlov D, Synkov S, Spuskanyuk A, Pashinska Y. Severe plastic deformation by twist extrusion. In: Zehetbauer MJ, R. Z. Valiev RZ, editors. Nanomaterials by severe plastic deformation. Weinheim, Germany: Wiley-VCH Verlag; 2004. pp. 511-516 [Link] [DOI:10.1002/3527602461.ch9e]
11. Akbaripanah F, Salavati MA, Mahmoudi R. The effects of extrusion and multi-directional forging (MDF) processes on microstructure, shear strength and microhardness of AM60 magnesium alloy. oy. Modares Mechanical Engineering. 2017;16(11):409-16. [Persian] [Link]
12. Moghaddam M, Zarei-Hanzaki A, Pishbin MH, Shafieizad AH, Oliveira VB. Characterization of the microstructure, texture and mechanical properties of 7075 aluminum alloy in early stage of severe plastic deformation. Materials Characterization. 2016;119:137-147. [Link] [DOI:10.1016/j.matchar.2016.07.026]
13. Binesh B, Aghaei Khafri M, Daneshi M. Simulation and experimental study of severe plastic deformation of 7075 Al alloy processed by repetitive upsetting-extrusion. Modares Mechanical Engineering. 2017;17(8):323-332. [Persian] [Link]
14. Saito Y, Utsunomiya H, Tsuji N, Sakai T. Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process. Acta Materialia. 1999;47(2):579-583. [Link] [DOI:10.1016/S1359-6454(98)00365-6]
15. Pouraliakbar H, Jandaghi MR, Khalaj G. Constrained groove pressing and subsequent annealing of Al-Mn-Si alloy: Microstructure evolutions, crystallographic transformations, mechanical properties, electrical conductivity and corrosion resistance. Materials & Design. 2017;124:34-46. [Link] [DOI:10.1016/j.matdes.2017.03.053]
16. Shin DH, Park JJ, Kim YS, Park KT. Constrained groove pressing and its application to grain refinement of aluminum. Materials Science and Engineering: A. 2002;328(1-2):98-103. [Link] [DOI:10.1016/S0921-5093(01)01665-3]
17. Borhani M, Djavanroodi F. Rubber pad-constrained groove pressing process: Experimental and finite element investigation. Materials Science and Engineering: A. 2012;546:1-7. [Link] [DOI:10.1016/j.msea.2012.02.089]
18. Morattab S, Ranjbar K, Reihanian M. On the mechanical properties and microstructure of commercially pure Al fabricated by semi-constrained groove pressing. Materials Science and Engineering: A. 2011;528(22-23):6912-6918. [Link] [DOI:10.1016/j.msea.2011.05.074]
19. Sajadi A, Ebrahimi M, Djavanroodi F. Experimental and numerical investigation of Al properties fabricated by CGP process. Materials Science and Engineering: A. 2012;552:97-103. [Link] [DOI:10.1016/j.msea.2012.04.121]
20. Torkestani A, Dashtbayazi MR. A new method for severe plastic deformation of the copper sheets. Materials Science and Engineering: A. 2018;737:236-244. [Link] [DOI:10.1016/j.msea.2018.09.054]
21. Nagaraju KN, Sunil AR, Sachin K, Sujay H, Siddesha HS, Anand Kumar S. Influence of constrained groove pressing passes and annealing characteristics on the mechanical properties of 6061 aluminum alloy. Materials Today Proceedings. 2018;5(1):2660-2665. [Link] [DOI:10.1016/j.matpr.2018.01.046]
22. Moradpour M, Khodabakhshi F, Eskandari H. Dynamic strain aging behavior of an ultra-finegrained Al-Mg alloy (AA5052) processed via classical constrained groove pressing. J Mater Res Technol. 2019;8(1):630-643. [Link] [DOI:10.1016/j.jmrt.2018.04.016]
23. Nazari F, Honarpisheh M. Analytical and experimental investigation of deformation in constrained groove pressing process. J Mech Eng Sci. 2019;233(11):1-9. [Link] [DOI:10.1177/0954406218809738]
24. Nazari F, Honarpisheh M. Analytical model to estimate force of constrained groove pressing process. Journal of Manufacturing Processes. 2018;32:11-19. [Link] [DOI:10.1016/j.jmapro.2018.01.015]
25. Wang Z, Guan Y, Wang T, Zhang Q, Wei X, Fang X, et al. Microstructure and mechanical properties of AZ31 magnesium alloy sheets processed by constrained groove pressing. Materials Science and Engineering: A. 2019;745:450-459. [Link] [DOI:10.1016/j.msea.2019.01.006]
26. Rafizadeh E, Mani A, Kazeminezhad M. The effects of intermediate and post-annealing phenomena on the mechanical properties and microstructure of constrained groove pressed copper sheet. Materials Science and Engineering: A. 2009;515(1-2):162-168. [Link] [DOI:10.1016/j.msea.2009.03.081]
27. Peng K, Zhang Y, Shaw LL, Qian KW. Microstructure dependence of a Cu-38Zn alloy on processing conditions of constrained groove pressing. Acta Materialia. 2009;57(18):5543-5553. [Link] [DOI:10.1016/j.actamat.2009.07.049]
28. Satheesh Kumar SS, Raghu T. Mechanical behaviour and microstructural evolution of constrained groove pressed nickel sheets. Journal of Materials Processing Technology. 2013;213(2):214-220. [Link] [DOI:10.1016/j.jmatprotec.2012.09.012]
29. Khodabakhshi F, Kazeminezhad M, Kokabi AH. Constrained groove pressing of low carbon steel: nano-structure and mechanical properties. Materials Science and Engineering: A. 2010;527(16-17):4043-4049. [Link] [DOI:10.1016/j.msea.2010.03.005]
30. Kumar S, Hariharan K, Digavalli RK, Paul SK. Accounting Bauschinger effect in the numerical simulation of constrained groove pressing process. Journal of Manufacturing Processes. 2019;38:49-62. [Link] [DOI:10.1016/j.jmapro.2018.12.013]
31. Safari M, Mostaan H, Bakhtiari A. Experimental investigation of butt weld friction stir welding of IF steel with thickness of 0.7 mm. Modares Mechanical Engineering. 2017;17(5):69-76. [Persian] [Link]
32. Čížeka J, Janeček M, Krajňák T, Stráská J, Hruška P, Gubicza J, et al. Structural characterization of ultrafine-grained interstitial-free steel prepared by severe plastic deformation. Acta Materialia. 2016;105:258-272. [Link] [DOI:10.1016/j.actamat.2015.12.039]
33. Ko YG, Hamad K. Analyzing the thermal stability of an ultrafine grained interstitial free steel fabricated by differential speed rolling. Materials Science and Engineering: A. 2018;726:32-36. [Link] [DOI:10.1016/j.msea.2018.04.068]
34. Shirdel A, Khajeh A, Moshksar MM. Experimental and finite element investigation of semi-constrained groove pressing process. Materials & Design. 2010;31(2):946-950. [Link] [DOI:10.1016/j.matdes.2009.07.035]
35. Satheesh Kumar SS, Raghu T. Structural and mechanical behaviour of severe plastically deformed high purity aluminium sheets processed by constrained groove pressing technique. Materials & Design. 2014;57:114-120. [Link] [DOI:10.1016/j.matdes.2013.12.053]
36. Ortiz AL, Shaw L. X-ray diffraction of a severely plastically deformed aluminium alloy. Acta Materialia. 2004;52(8):2185-2197. [Link] [DOI:10.1016/j.actamat.2004.01.012]
37. Rebhi A, Makhlouf T, Njah N. X-ray diffraction analysis of 99.1% recycled aluminium subjected to equal channel angular extrusion. Physics Procedia. 2009;2(3):1263-1270. [Link] [DOI:10.1016/j.phpro.2009.11.090]
38. Zhu YT, Lowe TC, Langdon TG. Performance and applications of nanostructured materials produced by severe plastic deformation. Scripta Materialia. 2004;51(8):825-830. [Link] [DOI:10.1016/j.scriptamat.2004.05.006]
39. Krishnaiah A, Chakkingal U, Venugopal P. Production of ultrafine grain sizes in aluminium sheets by severe plastic deformation using the technique of groove pressing. Scripta Materialia. 2005;52(12):1229-1233. [Link] [DOI:10.1016/j.scriptamat.2005.03.001]
40. Park KT, Shin DH. Microstructural interpretation of negligible strain hardening behaviour of submicrometer-grained low-carbon steel during tensile deformation. Metallurg Mater Trans A. 2002;33(3):705-707. [Link] [DOI:10.1007/s11661-002-0134-1]
41. Valiev RZ, Kozlov EV, Ivanov YF, Lian J, Nazarov AA, Baudelet B. Deformation behaviour of ultra-fine grained copper. Acta Metallurg Mater. 1994;42(7):2467-2475. [Link] [DOI:10.1016/0956-7151(94)90326-3]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.