Volume 20, Issue 3 (March 2020)                   Modares Mechanical Engineering 2020, 20(3): 611-621 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nazari M, Eskandari H, Golbaharhaghighi M. Fabrication and Mechanical Characterization of TiB2-Graphene Reinforced AA 6061 Composite by Friction Stirr Processing. Modares Mechanical Engineering 2020; 20 (3) :611-621
URL: http://mme.modares.ac.ir/article-15-29876-en.html
1- Engineering Faculty, Persian Gulf University, Bushehr, Iran
2- Engineering Faculty, Persian Gulf University, Bushehr, Iran , heskandari@pgu.ac.ir
Abstract:   (4605 Views)
In this research, friction stir processing was used to produce mono and hybrid surface composite layers of aluminum matrix containing TiB2 and graphene particles. Microstructural evaluation of the samples was performed by optical microscopy and field emission scanning electron microscopy of the composite samples cross-sections. The mechanical properties of the samples were investigated using microhardness and tension tests. Among the samples reinforced with TiB2 and graphene, the samples with 20wt% TiB2 and 1wt% graphene exhibited the highest hardness and strength compared to other samples. Aso, the highest mechanical properties are observed in the sample reinforced with hybrid powders include 20wt% TiB2 and 1wt% graphene. The yield and ultimate strength of the sample increased from 75 and 160MPa (corresponding to the initial 6061 AA) to 191 and 271MPa, respectively. Also, the average hardness of this sample in the stir zone is equal to VHN101 which was significantly higher than the initial alloy (VHN62) and the non-powdered friction-stir sample (VHN71).
Full-Text [PDF 1510 kb]   (1901 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2019/01/28 | Accepted: 2019/06/2 | Published: 2020/03/1

1. Rambabu P, Prasad NE, Kutumbarao VV, Wanhill RJH. Aluminium alloys for aerospace applications. In: Prasad NE, Wanhill RJH, editors. Aerospace Materials and Material Technologies. Singapore: Springer; 2017. [Link] [DOI:10.1007/978-981-10-2134-3_2]
2. Kissell JR, Pantelakis SG, Haidemenopoulos GN. Aluminum and aluminum alloys. In: Wessel JK, editor. Handbook of Advanced Materials: Enabling New Designs. Hoboken: John Wiley & Sons; 2004. [Link]
3. Tjong SC, Ma ZY. Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science and Engineering: R: Reports. 2000;29;(3):49-113. [Link] [DOI:10.1016/S0927-796X(00)00024-3]
4. Surappa MK. Aluminium matrix composites: Challenges and opportunities. Sadhana. 2003;28(1-2):319-334. [Link] [DOI:10.1007/BF02717141]
5. Ma ZY. Friction stir processing technology: A review. Metallurgical and Materials Transactions A. 2008;39(3):642-658. [Link] [DOI:10.1007/s11661-007-9459-0]
6. Nicholas ED. Friction processing technologies. Welding in the World. 2003;47(11-12):2-9. [Link] [DOI:10.1007/BF03266402]
7. Gharacheh MA. The influence of the ratio of ''rotational speed/traverse speed'' on mechanical properties of AZ31 friction stir welds [Dissertation]. Tehran: Sharif University of Technology; 2005. [Persian] [Link]
8. Jeon CH, Jeong YH, Seo JJ, Tien HN, Hong ST, Yum YJ, et al. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. International Journal of Precision Engineering and Manufacturing. 2014;15(6):1235-1239. [Link] [DOI:10.1007/s12541-014-0462-2]
9. Maurya R, Kumar B, Ariharan S, Ramkumar J, Balani K. Effect of carbonaceous reinforcements on the mechanical and tribological properties of friction stir processed Al6061 alloy. Materials & Design. 2016;98:155-166. [Link] [DOI:10.1016/j.matdes.2016.03.021]
10. Bisadi H, Abasi A. Fabrication of Al7075/TiB2 surface composite via friction stir processing. American Journal of Materials Science. 2012;1(2):67-70. [Link] [DOI:10.5923/j.materials.20110102.10]
11. Eskandari H, Taheri R. A novel technique for development of aluminum alloy matrix/TiB2/Al2O3 hybrid surface nanocomposite by friction stir processing. Procedia Materials Science. 2015;11:503-508. [Link] [DOI:10.1016/j.mspro.2015.11.080]
12. Shafiei-Zarghani A, Kashani-Bozorg SF, Zarei-Hanzaki A. Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Materials Science and Engineering: A. 2009;500(1-2):84-91. [Link] [DOI:10.1016/j.msea.2008.09.064]
13. Narimani M, Lotfi B, Sadeghian Z. Evaluation of the microstructure and wear behaviour of AA6063-B4C/TiB2 mono and hybrid composite layers produced by friction stir processing. Surface and Coatings Technology. 2016;285:1-10. [Link] [DOI:10.1016/j.surfcoat.2015.11.015]
14. Arora HS, Singh H, Dhindaw BK. Composite fabrication using friction stir processing-a review. The International Journal of Advanced Manufacturing Technology. 2012;61(9-12):1043-1055. [Link] [DOI:10.1007/s00170-011-3758-8]
15. McNelley TR, Swaminathan S, Su JQ. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scripta Materialia. 2008;58(5):349-354. [Link] [DOI:10.1016/j.scriptamat.2007.09.064]
16. Ramesh CS, Pramod S, Keshavamurthy R. A study on microstructure and mechanical properties of Al 6061-TiB2 in-situ composites. Materials Science and Engineering: A. 2011;528(12):4125-4132. [Link] [DOI:10.1016/j.msea.2011.02.024]
17. Tjong SC, Wang GS, Geng L, Mai YW. Cyclic deformation behavior of in situ aluminum-matrix composites of the system Al-Al3Ti-TiB2-Al2O3. Composites science and technology. 2004;64(13-14):1971-1980. [Link] [DOI:10.1016/j.compscitech.2004.02.006]
18. Tayyebi M, Eghbali B. Microstructure and mechanical properties of SiC-particle-strengthening tri-metal Al/Cu/Ni composite produced by accumulative roll bonding process. International Journal of Minerals, Metallurgy, and Materials. 2018;25;(3):357-364. [Link] [DOI:10.1007/s12613-018-1579-6]
19. Tayyebi M, Rahmatabadi D, Hashemi R. Review of mechanical and microstructural properties of aluminum matrix composites reinforced with ceramic particles produced by SPD processes. Journal of Science and Technology of Composites. 2019;5(4):583-594. [Persian] [Link]
20. Jauhari S, Kumar HGP, Xavior MA. Synthesis and characterization of AA 6061-Graphene-SiC hybrid nanocomposites processed through microwave sintering. InIOP Conference Series: Materials Science and Engineering. 2016;149:012086. [Link] [DOI:10.1088/1757-899X/149/1/012086]
21. Suresh S, Vinayaga Moorthi NS. Process development in stir casting and investigation on microstructures and wear behavior of TiB2 on Al6061 MMC. Procedia Engineering. 2013;64:1183-1190. [Link] [DOI:10.1016/j.proeng.2013.09.197]
22. Prakash T, Sivasankaran S, Sasikumar P. Mechanical and Tribological Behaviour of friction-Stir-Processed Al 6061 Aluminium Sheet Metal Reinforced with 0.5 Gr/Al2O3 Hybrid Surface Nanocomposite. Arabian Journal for Science and Engineering. 2015;40(2):559-569. [Link] [DOI:10.1007/s13369-014-1518-4]
23. Sharma V, Prakash U, Kumar BVM. Surface composites by friction stir processing: A review. Journal of Materials Processing Technology. 2015;224:117-134. [Link] [DOI:10.1016/j.jmatprotec.2015.04.019]
24. Suresh S, Vinayaga Moorthi NS, Vettivel SC, Selvakumar N. Mechanical behavior and wear prediction of stir cast Al-TiB2 composites using response surface methodology. Materials & Design. 2014;59:383-396. [Link] [DOI:10.1016/j.matdes.2014.02.053]
25. Bastwros M, Kim GY, Zhu C, Zhang K, Wang S, Tang X, et al. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Composites Part B: Engineering. 2014;60:111-118. [Link] [DOI:10.1016/j.compositesb.2013.12.043]
26. Kalyanamanohar V, Chandra Appalachari DG. Parameter optimization and evaluation of mechanical and thermal properties of nanographene reinforced Al 6060 surface composite using FSP. AIP Conference Proceedings. 2018;1943(1):020052. [Link] [DOI:10.1063/1.5029628]
27. Hu Z, Tong G, Lin D, Chen C, Guo H, Xu J, et al. Graphene-reinforced metal matrix nanocomposites-a review. Materials Science and Technology. 2016;32(9):930-953. [Link] [DOI:10.1080/02670836.2015.1104018]
28. Zhang Y, Li X. Bioinspired, graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness. Nano Letters. 2017;17(11):6907-6915. [Link] [DOI:10.1021/acs.nanolett.7b03308]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.