Volume 20, Issue 4 (April 2020)                   Modares Mechanical Engineering 2020, 20(4): 853-862 | Back to browse issues page

XML Persian Abstract Print


1- Manufacturing Department, Mechanical Engineering Faculty, Isfahan University of Technology, Isfahan, Iran
2- Manufacturing Department, Mechanical Engineering Faculty, Isfahan University of Technology, Isfahan, Iran , eforoozmehr@cc.iut.ac.ir
Abstract:   (2981 Views)
Selective laser sintering is one of the most popular additive manufacturing techniques used in recent years, due to its capability to build complicated geometries without the support structure. Thermal history plays a major role in the mechanical properties of the final product. In this research, the effects of different cooling down processes on mechanical properties of PA12 parts produced by selective laser sintering have been investigated. For this purpose, temperature changes of different points inside the powder bed during the built and cool down process have been monitored and recorded. Crystallization kinetics for the produced parts has been investigated by the non-isothermal crystallization model to help the interpreting of the results. Differential scanning calorimetry and X-ray powder diffraction (XRD) analysis were performed to find the degree of crystallinity and its possible correlation with mechanical properties. The results indicated that the parts cooled with the lower cooling rate showed 5% higher tensile strength and 10% more crystalline structure fraction comparing with the other two cool down methods. The results of crystallization kinetics for the produced parts by non-isothermal crystallization model showed that a lower cooling down rate led to slower crystallization in the component. The degree of crystallinity of the slow cooling down parts was about 10 percent more than the other samples. Based on the XRD results, the crystalline structure of the parts in all cooling down processes was the same (γ form crystal).
Full-Text [PDF 980 kb]   (2255 Downloads)    
Article Type: Original Research | Subject: Build add-on
Received: 2019/05/20 | Accepted: 2019/09/3 | Published: 2020/04/17

References
1. Brandt M. Laser additive manufacturing, materials, design, technologies, and applications. Sawston: Woodhead Publishing; 2016. [Link]
2. Hague R, Campbell I, Dickens P. Implications on design of rapid manufacturing. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2003;217(1):25-30. [Link] [DOI:10.1243/095440603762554587]
3. Guo N, Leu MC. Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering. 2013;8(3):215-243. [Link] [DOI:10.1007/s11465-013-0248-8]
4. Kruth JP, Leu MC, Nakagawa T. Progress in additive manufacturing and rapid prototyping. Cirp Annals. 1998;47(2):525-540. [Link] [DOI:10.1016/S0007-8506(07)63240-5]
5. Thomas CL, Gaffney TM, Kaza S, Lee CH. Rapid prototyping of large scale aerospace structures. Aerospace Applications Conference, 10 Feb. 1996, Aspen, CO, USA, USA. Piscataway: IEEE; 2002. [Link]
6. Song Y, Yan Y, Zhang R, Xu D, Wang F. Manufacture of the die of an automobile deck part based on rapid prototyping and rapid tooling technology. Journal of Materials Processing Technology. 2002;120(1-3):237-242. [Link] [DOI:10.1016/S0924-0136(01)01165-7]
7. Riedelbauch J, Rietzel D, Witt G. Analysis of material aging and the influence on the mechanical properties of polyamide 12 in the Multi Jet Fusion process. Additive Manufacturing. 2019;27:259-266. [Link] [DOI:10.1016/j.addma.2019.03.002]
8. Giannatsis J, Dedoussis V. Additive fabrication technologies applied to medicine and health care: A review. The International Journal of Advanced Manufacturing Technology. 2009;40(1-2):116-127. [Link] [DOI:10.1007/s00170-007-1308-1]
9. Gibson I, Rosen DW, Stucker B. Additive manufacturing technologies. Boston: Springer; 2010. [Link] [DOI:10.1007/978-1-4419-1120-9]
10. Bourell DL, Watt TJ, Leigh DK, Fulcher B. Performance limitations in polymer laser sintering. Physics Procedia. 2014;56:147-156. [Link] [DOI:10.1016/j.phpro.2014.08.157]
11. Dizon JRC, Espera Jr AH, Chen Q, Advincula RC. Mechanical characterization of 3D-printed polymers. Additive Manufacturing. 2018;20:44-67. [Link] [DOI:10.1016/j.addma.2017.12.002]
12. 3dsystems.com [Internet] Rock Hill: 3D Systems, Inc; 2019 [Cited 2019 Sept. 02]. Available from: www.3dsystems.com. [Link]
13. EOS. EOS GmbH electro optical systems. Krailling: EOS; 2019 [Cited 2019 Sept. 02]. Available from: http://www.eos.info/. [Link]
14. Goodridge RD, Tuck CJ, Hague RJM. Laser sintering of polyamides and other polymers. Progress in Materials Science. 2012;57(2):229-267. [Link] [DOI:10.1016/j.pmatsci.2011.04.001]
15. Josupeit S, Schmid H. Temperature history within laser sintered part cakes and its influence on process quality. Rapid Prototyping Journal. 2016;22(5):788-793. [Link] [DOI:10.1108/RPJ-11-2015-0166]
16. Ajoku U, Saleh N, Hopkinson N, Hague R, Erasenthiran P. Investigating mechanical anisotropy and end-of-vector effect in laser-sintered nylon parts. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2006;220(7):1077-1086. [Link] [DOI:10.1243/09544054JEM537]
17. Zhou H. Computer modeling for injection molding: Simulation, optimization, and control. Hoboken: John Wiley & Sons; 2013. [Link] [DOI:10.1002/9781118444887]
18. Van Hooreweder B, Moens D, Boonen R, Kruth JP, Sas P. On the difference in material structure and fatigue properties of nylon specimens produced by injection molding and selective laser sintering. Polymer Testing. 2013;32(5):972-981. [Link] [DOI:10.1016/j.polymertesting.2013.04.014]
19. Zarringhalam H, Hopkinson N, Kamperman NF, De Vlieger JJ. Effects of processing on microstructure and properties of SLS Nylon 12. Materials Science and Engineering: A. 2006;435-436:172-180. [Link] [DOI:10.1016/j.msea.2006.07.084]
20. Taylor SS. Thermal history correlation with mechanical properties for polymer selective laser sintering (SLS) [Dissertation]. Austin: University of Texas; 2017. [Link]
21. Craft G, Nussbaum J, Crane N, Harmon JP. Impact of extended sintering times on mechanical properties in PA-12 parts produced by powderbed fusion processes. Additive Manufacturing. 2018;22:800-806. [Link] [DOI:10.1016/j.addma.2018.06.028]
22. Li LB, Jean Koch MH, de Jeu WH. Crystalline structure and morphology in nylon-12: A small-and wide-angle X-ray scattering study. Macromolecules. 2003;36(5):1626-1632. [Link] [DOI:10.1021/ma025732l]
23. Kohan MI. Nylon plastics handbook. Munich: Hanser Pub Inc; 1995. [Link]
24. Piorkowska E, Rutledge GC. Handbook of polymer crystallization. Hoboken: John Wiley & Sons; 2013. [Link] [DOI:10.1002/9781118541838]
25. Avrami M. Kinetics of phase change. I General theory. The Journal of Chemical Physics. 1939;7:1103. [Link] [DOI:10.1063/1.1750380]
26. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12(3):150-158. [Link] [DOI:10.1016/0032-3861(71)90041-3]
27. Patel RM, Spruiell JE. Crystallization kinetics during polymer processing-analysis of available approaches for process modeling. Polymer Engineering and Science. 1991;31(10):730-738. [Link] [DOI:10.1002/pen.760311008]
28. Neugebauer F, Ploshikhin V, Ambrosy J, Witt G. Isothermal and non-isothermal crystallization kinetics of polyamide 12 used in laser sintering. Journal of Thermal Analysis and Calorimetry. 2016;124(2):925-933. [Link] [DOI:10.1007/s10973-015-5214-8]
29. Nakamura K, Watanabe T, Katayama K, Amano T. Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions. Journal of Applied Polymer Science. 1972;16(5):1077-1091. [Link] [DOI:10.1002/app.1972.070160503]
30. Nakamura K, Katayama K, Amano T. Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition. Journal of Applied Polymer Science. 1973;17(4):1031-1041. [Link] [DOI:10.1002/app.1973.070170404]
31. Amado A, Wegener K, Schmid M, Levy G. Characterization and modeling of non-isothermal crystallization of Polyamide 12 and co-Polypropylene during the SLS process. 5th International Polymers & Moulds Innovations Conference, 2012 12 - 14 September 2012; Ghent, Belgium. Gent: Ghent University; 2012. [Link]
32. Amado A, Schmid M, Wegener K. Simulation of warpage induced by non-isothermal crystallization of co-polypropylene during the SLS process. AIP Conference Proceedings. 2015;1664(1):160002. [Link] [DOI:10.1063/1.4918509]
33. Zhao M, Wudy K, Drummer D. Crystallization kinetics of polyamide 12 during Selective laser sintering. Polymers. 2018;10(2):168-177. [Link] [DOI:10.3390/polym10020168]
34. ASTM. ASTM D638-10, standard test method for tensile properties of plastics [Internet]. West Conshohocken: ASTM International; 2010 [cited 2019 Aug. 20]. Available from: https://www.astm.org/DATABASE.CART/HISTORICAL/D638-10.htm [Link]
35. Pham DT, Dotchev KD, Yusoff WAY. Deterioration of polyamide powder properties in the laser sintering process. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2008;222(11):2163-2176. [Link] [DOI:10.1243/09544062JMES839]
36. Fischer C, Seefried A, Drummer D. Crystallization and component properties of polyamide 12 at processing‐relevant cooling conditions. Polymer Engineering and Science. 2017;57(4):450-457. [Link] [DOI:10.1002/pen.24441]
37. Zarringhalam H. Investigation into crystallinity and degree of particle melt in selective laser sintering [Dissertation]. Loughborough: Loughborough University; 2007. [Link]
38. Kong Y, Hay JN. The enthalpy of fusion and degree of crystallinity of polymers as measured by DSC. European Polymer Journal. 2003;39(8):1721-1727. [Link] [DOI:10.1016/S0014-3057(03)00054-5]
39. Paolucci F, Baeten D, Roozemond PC, Goderis B, Peters GWM. Quantification of isothermal crystallization of polyamide 12: Modelling of crystallization kinetics and phase composition. Polymer. 2018;155:187-198. [Link] [DOI:10.1016/j.polymer.2018.09.037]
40. Ramesh C. Crystalline transitions in nylon 12. Macromolecules. 1999;32(17):5704-5706. [Link] [DOI:10.1021/ma990494o]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.