Volume 20, Issue 8 (August 2020)                   Modares Mechanical Engineering 2020, 20(8): 1951-1965 | Back to browse issues page

XML Persian Abstract Print


1- Aerospace Department, Aerospace Engineering Faculty, Shahid Sattari Aeronautical University of Science & Technology, Tehran, Iran , afshari@ssau.ac.ir
2- Mechanical Department, Mechanical Engineering Faculty, Yazd University, Yazd, Iran
3- Aerospace Department, Aerospace Engineering Faculty, Shahid Sattari Aeronautical University of Science & Technology, Tehran, Iran
4- Mechanical Department, Mechanical Engineering Faculty, Malek-Ashtar University of Technology, Isfahan, Iran
Abstract:   (2104 Views)
The study of turbulent boundary layer trailing edge noise as one of the most important aerodynamic sound generation mechanisms is a fundamental issue in design and production of equipment with minimum noise. In the present study, the utilization of finlets as a turbulent boundary layer trailing edge noise control technique is investigated. For this purpose, a flat-plate model, equipped with surface pressure transducers has been designed and built and the main parameters of trailing edge noise including the surface pressure spectra, the spanwise length scale, and eddy convection velocity in the trailing edge region have been measured. Moreover, in order to study the structure of the boundary layer flow downstream of the surface treatments, a single hot-wire anemometer has been used. The results showed that the presence of finlets leads to a significant reduction in the surface pressure spectra at all frequency ranges except for frequencies close to the maximum surface pressure spectrum. Furthermore, passing the flow structures through the finlets, although did not create significant changes to the spanwise length scale at high frequencies, however, they have led to an increase at low to mid frequencies. Finally, the Amiet-Roger model has been used to evaluate the changes in far field trailing edge noise due to the presence of the finlets and the results show the effectiveness of finlets in reducing trailing edge noise over a wide range of frequencies.
Full-Text [PDF 1518 kb]   (1253 Downloads)    
Article Type: Original Research | Subject: Sonic Flow
Received: 2019/12/23 | Accepted: 2020/05/5 | Published: 2020/08/15

References
1. Brooks TF, Pope DS, Marcolini MA. Airfoil self-noise and prediction. Scientific Research, NASA Technical Report .1989. Unknown Report number. [Link]
2. Roger M, Moreau S. Trailing edge noise measurements and prediction for subsonic loaded fan blades. 8th AIAA /CEAS Aeroacoustics Conference, 17-19 June 2002, Breckenridge, United States. Reston: AIAA; 2002. [Link] [DOI:10.2514/6.2002-2460]
3. Powell A. On the aerodynamic noise of a rigid flat plate moving at zero incidence. The Journal of the Acoustical Society of America. 1959;31:1649-1653. [Link] [DOI:10.1121/1.1907674]
4. Fink MVM. Experimental evaluation of theories for trailing edge and incidence fluctuation noise. AIAA Journal. 1975;13(11):1472-1477. [Link] [DOI:10.2514/3.60559]
5. Yu J, Tam CW. Experimental investigation of the trailing edge noise mechanism. AIAA Journal. 1978;16(10):1046-1052. [Link] [DOI:10.2514/3.61003]
6. Amiet RK. Noise due to turbulent flow past a trailing edge. Journal of Sound and Vibration. 1976;47(3):387-393. [Link] [DOI:10.1016/0022-460X(76)90948-2]
7. Howe M. A review of the theory of trailing edge noise. Journal of Sound and Vibration. 1978;61(3):437-465. [Link] [DOI:10.1016/0022-460X(78)90391-7]
8. Brooks TF, Hodgson TH. Trailing edge noise prediction from measured surface pressures. Journal of Sound and Vibration. 1981;78(1):69-117. [Link] [DOI:10.1016/S0022-460X(81)80158-7]
9. Oerlemans S, Fisher M, Maeder T, Kögler K. Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations. AIAA Journal. 2009;47(6):1470-1481. [Link] [DOI:10.2514/1.38888]
10. Lyu B, Azarpeyvand M, Sinayoko S. Prediction of noise from serrated trailing edges. Journal of Fluid Mechanics. 2016;793:556-588. [Link] [DOI:10.1017/jfm.2016.132]
11. Herr M, Dobrzynski W. Experimental investigations in low-noise trailing edge design. AIAA Journal. 2005;43(6):1167-1175. [Link] [DOI:10.2514/1.11101]
12. Finez A, Jondeau E, Roger M, Jacob MC. Broadband noise reduction with trailing edge brushes. In 16th AIAA/CEAS Aeroacoustics Conference, 7-9 June 2010, Stockholm, Sweden. Reston: AIAA; 2010. [Link] [DOI:10.2514/6.2010-3980]
13. Geyer T, Sarradj E, Fritzsche C. Measurement of the noise generation at the trailing edge of porous airfoils. Experiments in Fluids. 2009;48:291-308. [Link] [DOI:10.1007/s00348-009-0739-x]
14. Ali SAS, Azarpeyvand M, da Silva CRI. Trailing-edge flow and noise control using porous treatments. Journal of Fluid Mechanics. 2018;850:83-119. [Link] [DOI:10.1017/jfm.2018.430]
15. Göçmen T, Özerdem B. Airfoil optimization for noise emission problem and aerodynamic performance criterion on small scale wind turbines. Energy. 2012;46(1):62-71. [Link] [DOI:10.1016/j.energy.2012.05.036]
16. Jones R, Doolan CJ, Teubner M. Minimization of trailing edge noise by parametric airfoil shape modifications. In 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), 5-8 June 2011, Portland, United States. Reston: AIAA; 2011. [Link] [DOI:10.2514/6.2011-2782]
17. Clark IA, Alexander WN, Devenport W, Glegg S, Jaworski JW, Daly C, et al. Bioinspired trailing-edge noise control. AIAA Journal. 2017;55(3):740-754. [Link] [DOI:10.2514/1.J055243]
18. Clark IA, Alexander WN, Devenport W. Bio-inspired finlets for the reduction of marine rotor noise. in 23rd AIAA/CEAS Aeroacoustics Conference, 5-9 June 2017, Denver, United States. Reston: AIAA; 2017. [Link] [DOI:10.2514/6.2017-3867]
19. Shi Y, Lee S. Numerical study of 2-D finlets using RANS CFD for trailing edge noise reduction. In 2018 AIAA/CEAS Aeroacoustics Conference, 25-29 June 2018, Atlanta, United States. Reston: AIAA; 2017. [Link] [DOI:10.2514/6.2018-2812]
20. Bodling A, Sharma A. Numerical investigation of low-noise airfoils inspired by the down coat of owls. Bioinspiration & Biomimetics. 2018;14(1): 016013. [Link] [DOI:10.1088/1748-3190/aaf19c]
21. Bodling A, Sharma A. Numerical investigation of noise reduction mechanisms in a bio-inspired airfoil. Journal of Sound and Vibration. 2019;453:314-327. [Link] [DOI:10.1016/j.jsv.2019.02.004]
22. Howe MS. Aerodynamic noise of a serrated trailing edge. Journal of Fluids and Structures. 1991;5(1):33-45. [Link] [DOI:10.1016/0889-9746(91)80010-B]
23. Dean B, Bhushan B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Philosophical Transactions of the Royal Society of London a: Mathematical, Physical and Engineering Sciences. 2010;368(1929):4775-4806. [Link] [DOI:10.1098/rsta.2010.0201]
24. Bechert D, Bruse M, Hage W, Van der Hoeven JT, Hoppe G. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. Journal of Fluid Mechanics. 1997;338(1):59-87. [Link] [DOI:10.1017/S0022112096004673]
25. Lee SJ, Lee SH. Flow field analysis of a turbulent boundary layer over a riblet surface. Experiments in Fluids. 2001;30:153-166. [Link] [DOI:10.1007/s003480000150]
26. Kraichnan RH. Pressure fluctuations in turbulent flow over a flat plate. The Journal of the Acoustical Society of America. 1956;28(3):378-390. [Link] [DOI:10.1121/1.1908336]
27. Roger M, Moreau S, Wang M. An analytical model for predicting airfoil self-noise using wall-pressure statistics. Annual Research Brief, Center for Turbulence Research. 2002;Unknown Volume(Unknown Issue):405-414. [Link]
28. Mosallem MM. Numerical and experimental investigation of beveled trailing edge flow fields. Journal of Hydrodynamics, Ser. B. 2008;20(3):273-279. [Link] [DOI:10.1016/S1001-6058(08)60057-8]
29. Blake WK. Mechanics of flow-induced sound and vibration Volume 2, complex flow-structure interactions. 2nd Edition. London: Academic Press; 2017. [Link]
30. Barlow JB, Rae W, Pope A. Low-speed wind tunnel testing. 3rd Edition. New York: John Wiley & Sons; 1999. [Link]
31. Afshari A, Azarpeyvand M, Dehghan AA, Szoke M. Effects of streamwise surface treatments on trailing edge noise reduction. In 23rd AIAA/CEAS Aeroacoustics Conference, 5-9 June 2017, Denver, United States. Reston: AIAA; 2017. [Link] [DOI:10.2514/6.2017-3499]
32. Afshari A, Dehghan AA, Azarpeyvand M, Szőke M. Three-dimentional surface treatments for trailing edge noise reduction. In 23rd International Congress on Sound and Vibration, 10-14 July 2016, Athens, Greece. Athens: ICSV23; 2016. [Link] [DOI:10.2514/6.2017-3499]
33. Corcos G. Resolution of pressure in turbulence. Journal of the Acoustical Society of America. 1963;35:192-199. [Link] [DOI:10.1121/1.1918431]
34. Schewe G. On the structure and resolution of wall-pressure fluctuations associated with turbulent boundary-layer flow. Journal of Fluid Mechanics. 1983;134;311-328. [Link] [DOI:10.1017/S0022112083003389]
35. Goody M. Empirical spectral model of surface pressure fluctuations. AIAA Journal. 2004;42(9):1788-1794. [Link] [DOI:10.2514/1.9433]
36. Maryami R, Showkat Ali SA, Azarpeyvand M, Afshari A. Turbulent flow interaction with a circular cylinder. Physics of Fluids. 2020;32(1):015105. [Link] [DOI:10.1063/1.5119967]
37. Afshari A, Dehghan AA, Kalantar V, Farmani M. Analytical and experimental investigation of remote microphone system response for prediction of surface pressure fluctuations. Modares Mechanical Engineering. 2016;16(10):155-162. [Persian] [Link]
38. Afshari A, Dehghan AA, Farmani M. Experimental investigation of trailing edge noise by measuring unsteady surface pressures. Amirkabir Journal of Mechanical Engineering. 2017;51(6):61-70. [Link]
39. Leclère Q, Pereira A, Finez A, Souchotte P. Indirect calibration of a large microphone array for in-duct acoustic measurements. Journal of Sound and Vibration. 2016;376:48-59. [Link] [DOI:10.1016/j.jsv.2016.04.033]
40. Maryami R, Azarpeyvand M, Dehghan A, Afshari A. An experimental investigation of the surface pressure fluctuations for round cylinders. Journal of Fluids Engineering. 2019;141(6):061203. [Link] [DOI:10.1115/1.4042036]
41. Bendat JS, Piersol AG. Random data: analysis and measurement procedures. New York: John Wiley & Sons; 2011. [Link] [DOI:10.1002/9781118032428]
42. Corcos G. The structure of the turbulent pressure field in boundary-layer flows. Journal of Fluid Mechanics. 1964;18(3):353-378. [Link] [DOI:10.1017/S002211206400026X]
43. Herrig A, Kamruzzaman M, Würz W, Wagner S. Broadband airfoil trailing-edge noise prediction from measured surface pressures and spanwise length scales. Noise Notes. 2013;12(1-2):13-36. [Link] [DOI:10.1260/1475-4738.12.4.13]
44. Yavuzkurt S. A guide to uncertainty analysis of hot-wire data. Journal of Fluids Engineering. 1984;106(2):181-186. [Link] [DOI:10.1115/1.3243096]
45. Jørgensen FE. How to measure turbulence with hot-wire anemometers: a practical guide. Skovlunde: Dantec Dynamics; 2001. [Link]
46. Saeidinezhad A, Dehghan AA. Nose shape effect on the visualized flow field around an axisymmetric body of revolution at incidence. Journal of Visualization. 2015;18(1):83-93. [Link] [DOI:10.1007/s12650-014-0226-1]
47. Hwang YF, Bonness WK, Hambric SA. Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra. Journal of Sound and Vibration. 2009;319(1-2):199-217. [Link] [DOI:10.1016/j.jsv.2008.06.002]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.