Volume 20, Issue 5 (May 2020)                   Modares Mechanical Engineering 2020, 20(5): 1223-1234 | Back to browse issues page

XML Persian Abstract Print

1- Mechanical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
2- Mechanical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran , ahmadin@aut.ac.ir
Abstract:   (2122 Views)
Critically refracted longitudinal (Lcr) wave is the refraction of the longitudinal waves emitted from the first medium parallel with the surface of the second medium. The relationship between stress and wave velocity is expressed by acoustoelastic law. The theoretical relations for calculation of the acoustoelastic coefficient are so complex because of the need for measurement of material second and third-order elastic constants. The purpose of this research is the introduction of an accurate experimental method for acoustoelastic coefficient calculation, the effect of thickness of emission environment on the Lcr waves and, finally, the investigation of the stress measurement in shells and thin plates. By transmitting waves at the surface of the substance and investigating the waves received by the receiver transducers, the breakdown and the formation of different groups in the propagation of Lcr waves were detected. While the transmitted wave is composed of only one group. The results of this study show that longitudinal wave propagation in low thickness causes the formation of components of symmetrical and antisymmetric Lamb waves. By applying tensile stress on the sheet in which an Lcr wave was sent, it was determined that all groups received in the middle of the receiver transducer having a critical longitudinal nature behave identically to stress variations, while the Lamb's components behave differently to stress changes. Also, the study of variations of waves with stress less than yield point (up to 30MPa) shows that in a sample with a thickness of 0.5mm, the variations the flight time of the Lamb's S0 and A0 waves are 3.75 and 1.91 times the changes in the Lcr waves.
Full-Text [PDF 1314 kb]   (1573 Downloads)    
Article Type: Original Research | Subject: Mechatronics
Received: 2019/07/21 | Accepted: 2019/11/3 | Published: 2020/05/9

1. Rossini N, Dassisti M, Benyounis K, Olabi AG. Methods of measuring residual stresses in components. Materials & Design. 2012; 35:572-588. [Link] [DOI:10.1016/j.matdes.2011.08.022]
2. Olabi A, Hashmi M. The effect of post-weld heat-treatment on mechanical-properties and residual-stresses mapping in welded structural steel. Journal of Materials Processing Technology. 1995:55(2):117-122. [Link] [DOI:10.1016/0924-0136(95)01794-1]
3. Olabi A, Hashmi M. The microstructure and mechanical properties of low carbon steel welded components after the application of PWHTs. Journal of Materials Processing Technology. 1996;56(1-4):88-97. [Link] [DOI:10.1016/0924-0136(95)01824-7]
4. Olabi A, Hashmi M. Stress relief procedures for low carbon steel (1020) welded components. Journal of Materials Processing Technology. 1996;56(1-4):552-562. [Link] [DOI:10.1016/0924-0136(95)01869-7]
5. Olabi A, Hashmi M. Effects of the stress-relief conditions on a martensite stainless-steel welded component. Journal of Materials Processing Technology. 1998;77(1-3):216-225. [Link] [DOI:10.1016/S0924-0136(97)00420-2]
6. Olabi A, Casalino G, Benyounis K, Rotondo A. Minimisation of the residual stress in the heat affected zone by means of numerical methods. Materials & Design. 2007;28(8):2295-2302. [Link] [DOI:10.1016/j.matdes.2006.08.005]
7. Crecraft D. The measurement of applied and residual stresses in metals using ultrasonic waves. Journal of Sound and Vibration. 1967;5(1):173-192. [Link] [DOI:10.1016/0022-460X(67)90186-1]
8. Egle D, Bray D. Measurement of acoustoelastic and third‐order elastic constants for rail steel. The Journal of the Acoustical Society of America. 1976;60(3):741-744. [Link] [DOI:10.1121/1.381146]
9. Tang W, Bray DE. Stress and yielding studies using critical refracted longitudinal wave. New York: American Society of Mechanical Engineers; 1996. [Link]
10. Bray DE, Tang W. Subsurface stress evaluation in steel plates and bars using the LCR ultrasonic wave. Nuclear Engineering and Design. 2001;207(2):231-240. [Link] [DOI:10.1016/S0029-5493(01)00334-X]
11. Javadi Y, Akhlaghi M, Najafabadi MA. Using finite element and ultrasonic method to evaluate welding longitudinal residual stress through the thickness in austenitic stainless steel plates. Materials & Design. 2013;45:628-642. [Link] [DOI:10.1016/j.matdes.2012.09.038]
12. Sadeghi S, Najafabadi MA, Javadi Y, Mohammadisefat M. Using ultrasonic waves and finite element method to evaluate through-thickness residual stresses distribution in the friction stir welding of aluminum plates. Materials & Design. 2013;52:870-880. [Link] [DOI:10.1016/j.matdes.2013.06.032]
13. Javadi Y, Pirzaman HS, Raeisi MH, Najafabadi MA. Ultrasonic inspection of a welded stainless steel pipe to evaluate residual stresses through thickness. Materials & Design. 2013;49:591-601. [Link] [DOI:10.1016/j.matdes.2013.02.050]
14. Belahcene F, Lu J. Determination of residual stress using critically refracted longitudinal waves and immersion mode. The Journal of Strain Analysis for Engineering Design. 2002;37(1):13-20. [Link] [DOI:10.1243/0309324021514790]
15. Javadi Y, Pirzaman HS, Raeisi MH, Najafabadi MA. Ultrasonic evaluation of welding residual stresses in stainless steel pressure vessel. Journal of Pressure Vessel Technology. 2013;135(4):041502. [Link] [DOI:10.1115/1.4023432]
16. Javadi Y, Najafabadi MA, Akhlaghi M. Residual stress evaluation in dissimilar welded joints using finite element simulation and the L CR ultrasonic wave. Russian Journal of Nondestructive Testing. 2012;48(9):541-552. [Link] [DOI:10.1134/S1061830912090033]
17. Javadi Y, Afzali O, Raeisi MH, Najafabadi MA. Nondestructive evaluation of welding residual stresses in dissimilar welded pipes. Journal of Nondestructive Evaluation. 2013;32(2):177-187. [Link] [DOI:10.1007/s10921-013-0171-2]
18. Javadi Y, Akhlaghi M, Najafabadi MA. Nondestructive evaluation of welding residual stresses in austenitic stainless steel plates. Research in Nondestructive Evaluation. 2014;25(1):30-43. [Link] [DOI:10.1080/09349847.2013.822134]
19. Sattari-Far I, Javadi Y. Influence of welding sequence on welding distortions in pipes. International Journal of Pressure Vessels and Piping. 2008;85(4):265-274. [Link] [DOI:10.1016/j.ijpvp.2007.07.003]
20. Javadi Y. Ultrasonic measurement of hoop residual stress in stainless steel pipes. Manufacturing and Industrial Engineering. 2013;12(1-2):1-6. [Link] [DOI:10.12776/mie.v12i1-2.175]
21. Javadi Y, Hloch S. Employing the waves to measure longitudinal residual stresses in different depths of a stainless steel welded plate. Advances in Materials Science and Engineering. 2013;2013:746187. [Link] [DOI:10.1155/2013/746187]
22. Xu C, Song W, Pan Q, Li H, Liu S. Nondestructive testing residual stress using ultrasonic critical refracted longitudinal wave. Physics Procedia. 2015;70:594-598. [Link] [DOI:10.1016/j.phpro.2015.08.030]
23. Liu B, Dong S. Stress evaluation of laser cladding coating with critically refracted longitudinal wave based on cross correlation function. Applied Acoustics. 2016;101:98-103. [Link] [DOI:10.1016/j.apacoust.2015.08.015]
24. Zhan Y, Liu C, Kong X, Lin Z. Experiment and numerical simulation for laser ultrasonic measurement of residual stress. Ultrasonics. 2017;73:271-276. [Link] [DOI:10.1016/j.ultras.2016.08.013]
25. Zhan Y, Li Y, Zhang E, Ge Y, Liu C. Laser ultrasonic technology for residual stress measurement of 7075 aluminum alloy friction stir welding, Applied Acoustics. 2019;145:52-59. [Link] [DOI:10.1016/j.apacoust.2018.09.010]
26. Wang W, Zhang Y, Zhou Y, Meng S, Chen D. Plane stress measurement of orthotropic materials using critically refracted longitudinal waves. Ultrasonics. 2018;94:430-437. [Link] [DOI:10.1016/j.ultras.2018.03.015]
27. Mao H, Zhang Y, Mao H, Li X, Huang Z. Stress evaluation of metallic material under steady state based on nonlinear critically refracted longitudinal wave. Results in Physics. 2018;9:665-672. [Link] [DOI:10.1016/j.rinp.2018.03.029]
28. He J, Li Z, Teng J, Li M, Wang Y. Absolute stress field measurement in structural steel members using the Lcr wave method. Measurement. 2018;122:679-687. [Link] [DOI:10.1016/j.measurement.2018.03.022]
29. Liu H, Li Y, Li T, Zhang X, Liu Y, Liu K, Wang Y. Influence factors analysis and accuracy improvement for stress measurement using ultrasonic longitudinal critically refracted (LCR) wave. Applied Acoustics. 2018;141:178-187. [Link] [DOI:10.1016/j.apacoust.2018.07.017]
30. Wang W, Xu C, Zhang Y, Zhou Y, Meng S, Deng Y. An improved ultrasonic method for plane stress measurement using critically refracted longitudinal waves. NDT & E International. 2018;99:117-122. [Link] [DOI:10.1016/j.ndteint.2018.07.006]
31. Bermes C, Kim JY, Qu J, Jacobs LJ. Experimental characterization of material nonlinearity using Lamb waves. Applied Physics Letters. 2007;90(2):021901. [Link] [DOI:10.1063/1.2431467]
32. Niethammer M, Jacobs LJ, Qu J, Jarzynski J. Time-frequency representations of Lamb waves. The Journal of the Acoustical Society of America. 2001;109(5):1841-1847. [Link] [DOI:10.1121/1.1357813]
33. Mohabuth M, Kotousov A, Ng CT. Effect of uniaxial stress on the propagation of higher-order Lamb wave modes. International Journal of Non-Linear Mechanics. 2016;86:104-111 [Link] [DOI:10.1016/j.ijnonlinmec.2016.08.006]
34. Wang L, Yuan F. Group velocity and characteristic wave curves of Lamb waves in composites: Modeling and experiments. Composites Science and Technology. 2007;67(7-8):1370-1384. [Link] [DOI:10.1016/j.compscitech.2006.09.023]
35. Pei N, Bond LJ. Higher order acoustoelastic Lamb wave propagation in stressed plates. The Journal of the Acoustical Society of America. 2016;140(5):3834-3843. [Link] [DOI:10.1121/1.4967756]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.