Volume 20, Issue 5 (May 2020)                   Modares Mechanical Engineering 2020, 20(5): 1333-1346 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rostamnejad Charati A, Abdoos H, Borhani E, Naseri M. Evaluation of Mechanical and Electrical Properties of Al/Cu/Carbon Nanotubes Multilyer Nanocomposites Manufactured by Accumulative Roll Bonding (ARB). Modares Mechanical Engineering. 2020; 20 (5) :1333-1346
URL: http://mme.modares.ac.ir/article-15-35502-en.html
1- Nanotechnology Faculty, New Sciences & Technologies Campus, Semnan University, Semnan, Iran
2- Nanotechnology Faculty, New Sciences & Technologies Campus, Semnan University, Semnan, Iran , h.abdoos@semnan.ac.ir
3- Materials Science & Engineering Department, Engineering Faculty, Shahid Chamran University, Ahvaz, Iran
Abstract:   (1063 Views)
In the present study, multilayer nanocomposites fabricated by accumulative roll bonding (ARB) process. Aluminum sheets, copper sheets (with 0.1 and 0.3mm thickness) and multiwall carbon nanotubes (MWCNTs) were used as experimental materials. The rolling process continued to five cycles. ‌Then, microstructure, hardness, tensile strength and electrical conductivity of nanocomposites were investigated. Necking and fracturing recognized as mechanisms of copper layers distribution in the aluminum matrix. The bonding strength between layers increased with the number of cycles due to the improvement of MWCNTs distribution. ‌The results show that the hardness of aluminum increased with increasing copper layer thickness and these increases were about 30 and 32% for composites without nano reinforcements and nanocomposites contain MWCNTs, respectively. The highest hardness (147HV), is related to the sample containing carbon nanotubes and 0.3mm copper sheet, after five rolling cycles (446% increase compared to aluminum sheets). The results confirm the positive effect of copper and the MWCNTs on the improvement of strength. The highest strength and elongation is observed in the aluminum-copper-MWCNTs nanocomposite after four cycles. The results also indicated that the addition of copper and MWCNTs can simultaneously increase the strength and electrical conductivity of the resulted composites.
Full-Text [PDF 1835 kb]   (144 Downloads)    
Article Type: Original Research | Subject: Analysis & Selection of Materials
Received: 2019/08/8 | Accepted: 2019/11/6 | Published: 2020/05/9

References
1. Mehr VY, Rezaeian A, Toroghinejad MR. Application of accumulative roll bonding and anodizing process to produce Al-Cu-Al2O3 composite. Materials & Design. 2015 ;70:53-59. [Link] [DOI:10.1016/j.matdes.2014.12.042]
2. Eizadjou M, Talachi AK, Manesh HD, Shahabi HS, Janghorban K. Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process. Composites Science and Technology. 2008;68(9):2003-2009. [Link] [DOI:10.1016/j.compscitech.2008.02.029]
3. Salimi S, Izadi H, Gerlich AP. Fabrication of an aluminum-carbon nanotube metal matrix composite by accumulative roll-bonding. Journal of materials science. 2011;46(2):409-415. [Link] [DOI:10.1007/s10853-010-4855-z]
4. Moghadam AD, Omrani E, Menezes PL, Rohatgi PK. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene-a review. Composites Part B: Engineering. 2015;77:402-420. [Link] [DOI:10.1016/j.compositesb.2015.03.014]
5. Morovvati MR, Mollaei-Dariani B. The formability investigation of CNT-reinforced aluminum nano-composite sheets manufactured by accumulative roll bonding. The International Journal of Advanced Manufacturing Technology. 2018;95(9-12):3523-33. [Link] [DOI:10.1007/s00170-017-1205-1]
6. Kitazono K, Sato E, Kuribayashi K. Novel manufacturing process of closed-cell aluminum foam by accumulative roll-bonding. Scripta Materialia. 2004 ;50(4):495-498. [Link] [DOI:10.1016/j.scriptamat.2003.10.035]
7. Nasresfahani MR, Shamanian M. Development and characterization of Al/MWCNT-Al2O3 hybrid composite by accumulative roll bonding. Journal of Materials Science. 2018;53(15):10812-10821. [Link] [DOI:10.1007/s10853-018-2372-7]
8. Zare H, Jahedi M, Toroghinejad MR, Meratian M, Knezevic M. Compressive, shear, and fracture behavior of CNT reinforced Al matrix composites manufactured by severe plastic deformation. Materials & Design. 2016;106:112-119. [Link] [DOI:10.1016/j.matdes.2016.05.109]
9. Tabesh A, Ebrahimi Gh, Ezatpour HR. The investigation and comparison of mechanical propertise and microstructure Al/CNT and Al/CNT/Al2O3 copmosites produced by mixed accumulative roll bounding. Journal of Science and Technology of Composites. 2018;4(4):464-470. [Persian] [Link]
10. Samadzadeh M, Toroghinejad MR. The influence of carbon nanotube and roll bonding parameters on the bond strength of Al sheets. Journal of Materials Engineering and Performance. 2014;23(5):1887-1895. [Link] [DOI:10.1007/s11665-014-0949-0]
11. Mahdavian MM, Khatami-Hamedani H, Abedi HR. Macrostructure evolution and mechanical properties of accumulative roll bonded Al/Cu/Sn multilayer composite. Journal of Alloys and Compounds. 2017;703:605-613. [Link] [DOI:10.1016/j.jallcom.2017.01.300]
12. Salari H, Mahmoodi M, Borhani E. New strategy to simultaneous increase in strength and electrical conductivity of ufg copper strip fabricated via accumulative roll bonding- cold roll bonding. Modares Mechanical Engineering. 2019;19(9):2085-2092. [Persian] [Link]
13. Yao G, Mei Q, Li J, Li C, Ma Y, Chen F, et al. Hard copper with good electrical conductivity fabricated by accumulative roll-bonding to ultrahigh strains. Metals. 2016;6(5):115-120. [Link] [DOI:10.3390/met6050115]
14. Yao GC, Mei QS, Li JY, Li CL, Ma Y, Chen F, et al. Cu/C composites with a good combination of hardness and electrical conductivity fabricated from Cu and graphite by accumulative roll-bonding. Materials & Design. 2016;110:124-129. [Link] [DOI:10.1016/j.matdes.2016.07.129]
15. Mehr VY, Toroghinejad MR, Rezaeian A. Mechanical properties and microstructure evolutions of multilayered Al-Cu composites produced by accumulative roll bonding process and subsequent annealing. Materials Science and Engineering: A. 2014;601:40-47. [Link] [DOI:10.1016/j.msea.2014.02.023]
16. Bowler N, Huang Y. Electrical conductivity measurement of metal plates using broadband eddy-current and four-point methods. Measurement Science and Technology. 2005;16(11):2193. [Link] [DOI:10.1088/0957-0233/16/11/009]
17. Vaidyanath LR, Nicholas MG, Milner DR. Pressure welding by rolling. British Welding Jour. 1959;6:13-28 [Link]
18. Jamaati R, Toroghinejad MR. Investigation of the parameters of the cold roll bonding (CRB) process. Materials Science and Engineering: A. 2010;527(9):2320-2326. [Link] [DOI:10.1016/j.msea.2009.11.069]
19. Saito Y, Utsunomiya H, Tsuji N, Sakai T. Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process. Acta materialia. 1999;47(2):579-583. [Link] [DOI:10.1016/S1359-6454(98)00365-6]
20. Torralba JD, Da Costa CE, Velasco F. P/M aluminum matrix composites: an overview. Journal of Materials Processing Technology. 2003;133(1-2):203-206. [Link] [DOI:10.1016/S0924-0136(02)00234-0]
21. Yazdani A, Salahinejad E. Evolution of reinforcement distribution in Al-B4C composites during accumulative roll bonding. Materials & Design. 2011;32(6):3137-3142. [Link] [DOI:10.1016/j.matdes.2011.02.063]
22. Yazdani A, Salahinejad E, Moradgholi J, Hosseini M. A new consideration on reinforcement distribution in the different planes of nanostructured metal matrix composite sheets prepared by accumulative roll bonding (ARB). Journal of Alloys and Compounds. 2011;509(39):9562-9564. [Link] [DOI:10.1016/j.jallcom.2011.07.084]
23. Shaarbaf M, Toroghinejad MR. Nano-grained copper strip produced by accumulative roll bonding process. Materials Science and Engineering A. 2008 ;473(1-2):28-33. [Link] [DOI:10.1016/j.msea.2007.03.065]
24. Saito Y, Tsuji N, Utsonomiya H, Sakai T, Hong RG. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scripta Materialia. 1998;39(9):1221-1227. [Link] [DOI:10.1016/S1359-6462(98)00302-9]
25. Hansen N, Huang X, Ueji R, Tsuji N. Structure and strength after large strain deformation. Materials Science and Engineering: A. 2004;387:191-194. [Link] [DOI:10.1016/j.msea.2004.02.078]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author