Volume 20, Issue 6 (June 2020)                   Modares Mechanical Engineering 2020, 20(6): 1463-1473 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azadi M, Rezanezhad S, Zolfaghari M, Azadi M. Effect of Simultaneous Use of Silica Nanoparticles and Heat Treatment on High-Cycle Bending Fatigue Lifetime in Piston Aluminum Alloy. Modares Mechanical Engineering. 2020; 20 (6) :1463-1473
URL: http://mme.modares.ac.ir/article-15-35569-en.html
1- Mechanical Engineering Faculty, Semnan University, Semnan, Iran , m_azadi@semnan.ac.ir
2- Mechanical Engineering Faculty, Semnan University, Semnan, Iran
3- Material & Metallurgical Engineering Faculty, Semnan University, Semnan, Iran
Abstract:   (1186 Views)
Aluminum-silicon alloys have vast applications in-vehicle components, such as the piston. Usually, such parts are under thermal and mechanical cyclic loadings, and therefore, they should have enough fatigue strength. For strengthening methods, the heat treatment and the addition of nanoparticles could be mentioned. In this research, the effect of the simultaneous use from SiO2 nanoparticles and the heat treatment was investigated on the high-cycle fatigue lifetime of the piston alloy, which is the novelty of this study. The stir-casting method was used for adding nanoparticles into the aluminum matrix, and the T6 heat treatment was done on samples. The microstructure was examined by the optical microscopy and also the field-emission scanning electron microscopy (FESEM), and high-cycle bending fatigue tests were performed, under fully-reversed loading conditions. Based on FESEM images, no agglomeration of nanoparticles was observed in the matrix. In addition, it was found that using SiO2 nanoparticles, heat treatment, and the combination of two approaches, caused to the improvement of the fatigue lifetime, for 304, 411 and 237%, respectively. According to high-cycle bending fatigue data, the fatigue strength coefficient of the piston alloy increased by the heat treatment, and the addition of nanoparticles.
Full-Text [PDF 1222 kb]   (129 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2019/08/10 | Accepted: 2019/12/7 | Published: 2020/06/20

1. Sadeler R, Totik Y, Gavgali M, Kaymaz I. Improvements of fatigue behaviour in 2014-Al alloy by solution heat treating and age-hardening, Materials & Design. 2004;25(5):439-445. [Link] [DOI:10.1016/j.matdes.2003.12.003]
2. Azadi M, Zolfaghari M, Rezanezhad S, Azadi M. Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods. Applied Physics A. 2018;124:377. [Link] [DOI:10.1007/s00339-018-1797-9]
3. Azadi M, Shirazabad MM. Heat treatment effect on thermo-mechanical fatigue and low cycle fatigue behaviors of A356. 0 aluminum alloy. Materials & Design. 2013;45:279-285. [Link] [DOI:10.1016/j.matdes.2012.08.066]
4. Wang M, Pang J, Li S, Zhang Z. Low-cycle fatigue properties and life prediction of Al-Si piston alloy at elevated temperature. Materials Science and Engineering: A. 2017;704:500-520. [Link] [DOI:10.1016/j.msea.2017.08.014]
5. Azadi M, Zolfaghari M, Rezanezhad S, Azadi M. Preparation of various aluminium matrix composites reinforcing by nano-particles with different dispersion methods. Proceedings of Iran International Aluminium Conference; 2018 April 24-25; Tehran: IIAC; 2018. [Link]
6. Zeren M. The effect of heat-treatment on aluminum-based piston alloys. Materials & Design. 2007;28(9):2511-2517. [Link] [DOI:10.1016/j.matdes.2006.09.010]
7. Divagar S, Vigneshwar M, Selvamani S. Impacts of nano particles on fatigue strength of aluminum based metal matrix composites for aerospace. Materials Today: Proceedings. 2016;3(10):3734-3739. [Link] [DOI:10.1016/j.matpr.2016.11.021]
8. Raju PRM, Rajesh S, Raju KSR, Raju VR. Evaluation of fatigue life of Al2024/Al2O3 particulate nano composite fabricated using stir casting technique. Materials Today: Proceedings. 2017;4(2):3188-3196. [Link] [DOI:10.1016/j.matpr.2017.02.204]
9. Mazahery A, Abdizadeh H, Baharvandi H. Development of high-performance A356/nano-Al2O3 composites. Materials Science and Engineering: A. 2009;518(1-2):61-64. [Link] [DOI:10.1016/j.msea.2009.04.014]
10. Han G, Zhang W, Zhang G, Feng Z, Wang Y. High-temperature mechanical properties and fracture mechanisms of Al-Si piston alloy reinforced with in situ TiB2 particles. Materials Science and Engineering: A. 2015;633:161-168. [Link] [DOI:10.1016/j.msea.2015.03.021]
11. Gmbh M, editors. Pistons and engine testing. Berlin: Springer; 2012. [Link]
12. ASM Handbook, Volume 19: Fatigue and fracture. Geauga County: ASM International; 1996. [Link]
13. Mollaei M, Azadi M, Tavakoli H. A parametric study on mechanical properties of aluminum-silicon/SiO2 nano-composites by a solid-liquid phase processing. Applied Physics A. 2018;124(7):1-6. [Link] [DOI:10.1007/s00339-018-1929-2]
14. Azadi M, Rezanezhad S, Zolfaghari M. Effects of various ageing heat treatments on microstructural features and hardness of piston aluminum alloy. International Journal of Engineering. 2019;32(1):92-98. [Link] [DOI:10.5829/ije.2019.32.01a.12]
15. Kiepura RT, Sanders BR, editors. ASM Handbook volume 9: Metallography and microstructures. Geauga County: ASM International; 1985. [Link]
16. Khameneh MJ, Azadi M. Evaluation of high-cycle bending fatigue and fracture behaviors in EN-GJS700-2 ductile cast iron of crankshafts. Engineering Failure Analysis. 2018;85:189-200. [Link] [DOI:10.1016/j.engfailanal.2017.12.017]
17. Basquin O. The exponential law of endurance tests. American Society for Testing and Materials Proceedings. 1910;10:625-630. [Link]
18. Humbertjean A, Beck T. Effect of the casting process on microstructure and lifetime of the Al-piston-alloy AlSi12Cu4Ni3 under thermo-mechanical fatigue with superimposed high-cycle fatigue loading. International Journal of Fatigue. 2013;53:67-74. [Link] [DOI:10.1016/j.ijfatigue.2011.09.017]
19. Han L, Sui Y, Wang Q, Wang K, Jiang Y. Effects of Nd on microstructure and mechanical properties of cast Al-Si-Cu-Ni-Mg piston alloys. Journal of Alloys and Compounds. 2017;695:1566-1572. [Link] [DOI:10.1016/j.jallcom.2016.10.300]
20. Salehi A, Babakhani A, Zebarjad SM. Microstructural and mechanical properties of Al-SiO2 nanocomposite foams produced by an ultrasonic technique. Materials Science and Engineering: A. 2015;638:54-59. [Link] [DOI:10.1016/j.msea.2015.04.024]
21. Weixi S, Bo G, Ganfeng T, Shiwei L, Yi H, Fuxiao Y. Effect of neodymium on primary silicon and mechanical properties of hypereutectic Al-15% Si alloy. Journal of Rare Earths. 2010;28(Suppl 1):367-370. [Link] [DOI:10.1016/S1002-0721(10)60363-8]
22. Chong C, Liu ZX, Bo R, Wang MX, Weng YG, Liu ZY. Influences of complex modification of P and RE on microstructure and mechanical properties of hypereutectic Al-20Si alloy. Transactions of Nonferrous Metals Society of China. 2007;17(2):301-306. [Link] [DOI:10.1016/S1003-6326(07)60089-2]
23. Liao H, Sun Y, Sun G. Correlation between mechanical properties and amount of dendritic α-Al phase in as-cast near-eutectic Al-11.6% Si alloys modified with strontium. Materials Science and Engineering: A. 2002;335(1-2):62-66. [Link] [DOI:10.1016/S0921-5093(01)01949-9]
24. Sunil B, Rajeev V, Jose S. A statistical study on the dry wear and friction characteristics of Al-12.6 Si-3Cu-(2-2.6 wt.%) Ni piston alloys. Materials Today: Proceedings. 2018;5(1):1131-1137. [Link] [DOI:10.1016/j.matpr.2017.11.193]
25. Zhu M, Jian Z, Yang G, Zhou Y. Effects of T6 heat treatment on the microstructure, tensile properties and fracture behavior of the modified A356 alloys. Materials & Design. 2012;36:243-249. [Link] [DOI:10.1016/j.matdes.2011.11.018]
26. Pio LY. Die cast A356 aluminium alloy. Journal of Applied Sciences. 2011;11:2048-2052. [Link] [DOI:10.3923/jas.2011.2048.2052]
27. Zhang G, Zhang J, Li B, Cai W. Double-stage hardening behavior and fracture characteristics of a heavily alloyed Al-Si piston alloy during low-cycle fatigue loading. Materials Science and Engineering: A. 2013;561:26-33. [Link] [DOI:10.1016/j.msea.2012.10.073]
28. Haskel T, Verran GO, Barbieri R. Rotating and bending fatigue behavior of A356 aluminum alloy: Effects of strontium addition and T6 heat treatment. International Journal of Fatigue. 2018;114:1-10. [Link] [DOI:10.1016/j.ijfatigue.2018.04.012]
29. Myriounis D, Matikas T, Hasan S. Fatigue behaviour of SiC particulate‐reinforced A359 aluminium matrix composites. Strain. 2012;48(4):333-341. [Link] [DOI:10.1111/j.1475-1305.2011.00827.x]

Add your comments about this article : Your username or Email:

Send email to the article author