Volume 20, Issue 6 (June 2020)                   Modares Mechanical Engineering 2020, 20(6): 1525-1532 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseinzadeh M, Zamani H, Mirzababaee S, Faezian A, Zarrinkalam F. Experimental Investigation of the Effect of Wind Speed on the Performance of a Portable Parabolic Solar Cooker from Energy and Exergy Viewpoints. Modares Mechanical Engineering 2020; 20 (6) :1525-1532
URL: http://mme.modares.ac.ir/article-15-35815-en.html
1- Food Industry Machineries Department, Research Institute of Food Science & Technology, Mashhad, Iran
2- Food Industry Machineries Department, Research Institute of Food Science & Technology, Mashhad, Iran , h.zamani@rifst.ac.ir
3- Mechanical Engineering Department, Engineering Faculty, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Abstract:   (2812 Views)
In this study, a portable parabolic solar cooker is designed and fabricated, and the daily performance of the solar cooker is investigated from the energy and exergy viewpoints. One of the important challenges of the parabolic solar cookers is the reduction of their performance in the windy conditions. In order to evaluate this issue, the effect of 0.2, 2, 4 and 6m/s wind speeds on the energy and exergy efficiencies of the solar cooker is studied. Based on the results, the energy efficiency of the parabolic solar cooker is 34.52-46.19% and the exergy efficiency is 2.11-5.60% during the experiment. The experimental results indicate that water can boil in the windy conditions using the fabricated solar cooker although the time required to boil water increases by rising the wind speed. According to the results, in the wind speed of 6m/s, the time taken to boil 2 liters of water is about 40min. Furthermore, the energy and exergy efficiencies of the parabolic solar cooker in the wind speed of 6m/s are 20.08% and 1.99%, respectively, lower than those in the wind speed of 0.2m/s.
Full-Text [PDF 913 kb]   (1521 Downloads)    
Article Type: Original Research | Subject: Renewable Energy
Received: 2019/08/21 | Accepted: 2020/02/8 | Published: 2020/06/20

1. Singh M, Sethi VP. On the design, modelling and analysis of multi-shelf inclined solar cooker-cum-dryer. Solar Energy. 2018;162:620-636. [Link] [DOI:10.1016/j.solener.2018.01.045]
2. Bhave AG, Thakare KA. Development of a solar thermal storage cum cooking device using salt hydrate. Solar Energy. 2018;171:784-789. [Link] [DOI:10.1016/j.solener.2018.07.018]
3. Soria-Verdugo A. Experimental analysis and simulation of the performance of a box-type solar cooker. Energy for Sustainable Development. 2015;29:65-71. [Link] [DOI:10.1016/j.esd.2015.09.006]
4. Yadav V, Kumar Y, Agrawal H, Yadav A. Thermal performance evaluation of solar cooker with latent and sensible heat storage unit for evening cooking. Australian Journal of Mechanical Engineering. 2015;15(2):93-102. [Link] [DOI:10.1080/14484846.2015.1093260]
5. Hafez AZ, Soliman A, El-Metwally KA, Ismail IM. Design analysis factors and specifications of solar dish technologies for different systems and applications. Renewable and Sustainable Energy Reviews. 2017;67:1019-1036. [Link] [DOI:10.1016/j.rser.2016.09.077]
6. Hassan IM. Optical Evaluation of Funneled Panel Solar Cooker and Design Evolution. Middle East Journal of Applied Sciences. 2017;7(4):992-1004. [Link]
7. Abu-Malouh R, Abdallah S, Muslih IM. Design, construction and operation of spherical solar cooker with automatic sun tracking system. Energy Conversion and Management. 2011;52(1):615-620. [Link] [DOI:10.1016/j.enconman.2010.07.037]
8. Lecuona A, Nogueira J, Ventas R, Rodríguez-Hidalgo M, Legrand M. Solar cooker of the portable parabolic type incorporating heat storage based on PCM. Applied Energy. 2013;111:1136-1146. [Link] [DOI:10.1016/j.apenergy.2013.01.083]
9. Öztürk HH. Experimental determination of energy and exergy efficiency of the solar parabolic-cooker. Solar Energy. 2004;77(1):67-71. [Link] [DOI:10.1016/j.solener.2004.03.006]
10. Arenas JM. Design, development and testing of a portable parabolic solar kitchen. Renewable energy. 2007;32(2):257-266. [Link] [DOI:10.1016/j.renene.2006.01.013]
11. Rathore N, Shukla SK. Experimental investigations and comparison of energy and exergy efficiencies of the box type and Solar Parabolic Cooker. International Journal of Energy Technology and Policy. 2009;7(2):201-212. [Link] [DOI:10.1504/IJETP.2009.027282]
12. Hosseinzadeh M, Mirzababaee S.M, Zamani H, Faezian A, Zarrinkalam F. Modeling of an Evacuated Tube Solar Cooker and Investigation of Weather Parameters Effect. Modares Mechanical Engineering. 2019;19(7):1573-1584. [Persian] [Link]
13. Kumar A, Shukla SK, Kumar A. Heat loss analysis: An approach toward the revival of parabolic dish type solar cooker. International Journal of Green Energy. 2018;15(2):96-105. [Link] [DOI:10.1080/15435075.2018.1423978]
14. Garg HP, Mann HS, Thanvi KP. Performance evaluation of five solar cookers. Proceedings of the International Solar Energy Society Congress; 1978 Jan; New Delhi, India: Elsevier; 1978. pp. 1491-1496. [Link] [DOI:10.1016/B978-1-4832-8407-1.50286-5]
15. Kumar S, Kandpal TC, Mullick SC. Effect of wind on the thermal performance of a parabolloid concentrator solar cooker. Renewable Energy. 1994;4(3):333-337. [Link] [DOI:10.1016/0960-1481(94)90037-X]
16. Kumar S, Kandpal TC, Mullick SC. Heat losses from a paraboloid concentrator solar cooker: Experimental investigations on effect of reflector orientation. Renewable Energy. 1993;3(8):871-876. [Link] [DOI:10.1016/0960-1481(93)90044-H]
17. Hosseinzadeh M, Sardarabadi M, Passandideh-Fard M. Nanofluid and Phase Change Material Integrated into a Photovoltaic Thermal System. In: Mittal V, editor. Phase Change Materials. Australia: Central West Publishing; 2019. pp. 93-127. [Link]
18. Saxena A, Agarwal N. Performance characteristics of a new hybrid solar cooker with air duct. Solar Energy. 2018;159:628-637. [Link] [DOI:10.1016/j.solener.2017.11.043]
19. Badran AA, Yousef IA, Joudeh NK, Al Hamad R, Halawa H, Hassouneh HK. Portable solar cooker and water heater. Energy Conversion and Management. 2010;51(8):1605-1609. [Link] [DOI:10.1016/j.enconman.2009.09.038]
20. Park SR, Pandey AK, Tyagi VV, Tyagi SK. Energy and exergy analysis of typical renewable energy systems. Renewable and Sustainable Energy Reviews. 2014;30:105-123. [Link] [DOI:10.1016/j.rser.2013.09.011]
21. Hosseinzadeh M, Sardarabadi M, Passandideh-Fard M. Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material. Energy. 2018;147:636-647. [Link] [DOI:10.1016/j.energy.2018.01.073]
22. Lahkar PJ, Samdarshi SK. A review of the thermal performance parameters of box type solar cookers and identification of their correlations. Renewable and Sustainable Energy Reviews. 2010;14(6):1615-1621. [Link] [DOI:10.1016/j.rser.2010.02.009]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.