Volume 20, Issue 5 (May 2020)                   Modares Mechanical Engineering 2020, 20(5): 1255-1269 | Back to browse issues page

XML Persian Abstract Print

1- Mechanical Engineering Faculty, Amirkabir University of Technology (AUT) Polytechnic, Tehran, Iran
2- Mechanical Engineering Faculty, Iran University of Science & Technology (IUST), Tehran, Iran , khanmirza@iust.ac.ir
3- Mechanical Engineering Faculty, Iran University of Science & Technology (IUST), Tehran, Iran
Abstract:   (2095 Views)
In this research, the development of technical knowledge and the implementation of modern control strategies on the IoT platform has been investigated. In this regard, using multi-layer hierarchical control over the IoT platform enables the communication and transfer of information from lower layers to upper layers, and the ability to process data and provide of control solutions considering new conditions from upper layers to lower layers. One of the main applications of this approach is the control of high-inertia systems, by optimizing the local layer by the main layer. For this purpose, a two-layer controller has been considered, that controls the soil temperature and humidity time-delay systems in the bottom layer in the form of PID and IFTTT control, respectively. Meanwhile, the upper layer uses the obtained information and the differential evolution algorithm (DE) and ANFIS controller, adjust the PID controller coefficients applied to the subsystem and IFTTT workstations, respectively. This reduces the size and complexity of the hardware used in the lower layers and consequently reduces the costs involved. It allows the implementation of sophisticated controllers, especially on large-scale plants. On the other hand, it is also possible to control high-inertia systems. The simulation results and practical tests indicated that this control strategy was very effective in IoT platforms.
Full-Text [PDF 1363 kb]   (998 Downloads)    
Article Type: Original Research | Subject: Mechatronics
Received: 2019/09/18 | Accepted: 2019/11/12 | Published: 2020/05/9

1. Kojima C. Hierarchical network identification of large-scale systems-an approach based on dissipation equalities. IFAC Proceedings Volumes. 2014;47(3):5538-5543. [Link] [DOI:10.3182/20140824-6-ZA-1003.01102]
2. Shyu KK, Liu WJ, Hsu KC. Design of large-scale time-delayed systems with dead-zone input via variable structure control. Automatica. 2005;41(7):1239-1246. [Link] [DOI:10.1016/j.automatica.2005.03.004]
3. Fu Y, Bi J, Gao K, Chen Z, Wu J, Hao B, editors. Orion: A hybrid hierarchical control plane of software-defined networking for large-scale networks. 2014 IEEE 22nd International Conference on Network Protocols. Raleigh, NC: IEEE; 2014. [Link] [DOI:10.1109/ICNP.2014.91]
4. Moghadam HZ, Landers RG, Balakrishnan S. Hierarchical optimal force-position control of complex manufacturing processes. Control Engineering Practice. 2014;25:75-84. (لینک منبع ارسال شود) [Link] [DOI:10.1016/j.conengprac.2013.12.008]
5. Koo TJ, Pappas GJ, Sastry S. Multi-modal control of systems with constraints. Proceedings of the 40th IEEE Conference on Decision and Control (Cat No 01CH37228). Orlando, FL: IEEE; 2001. [Link]
6. He Q, Head KL, Ding J. Multi-modal traffic signal control with priority, signal actuation and coordination. Transportation Research Part C: Emerging Technologies. 2014;46:65-82. [Link] [DOI:10.1016/j.trc.2014.05.001]
7. Zhang T, Hou Y, Gao Q, Hou R, Min H, Jia L, editors. The Research of Multi-modal Control Strategy. 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). Hangzhou: IEEE; 2016. [Link] [DOI:10.1109/IHMSC.2016.50]
8. Hu X. Research on the smooth transition of multi-mode control strategy and its application. China Mechanical Engineering. 2005;16(16):1423-1426. (لینک منبع ارسال شود) [Link]
9. Li X, Pan Y, Chen G, Yu H. Multi-modal control scheme for rehabilitation robotic exoskeletons. The International Journal of Robotics Research. 2017;36(5-7):759-777. [Link] [DOI:10.1177/0278364917691111]
10. Jeon S-i, Jo S-t, Park Y-i, Lee J-m. Multi-mode driving control of a parallel hybrid electric vehicle using driving pattern recognition. Journal of Dynamic Systems, Measurement, and Control. 2002;124(1):141-149. [Link] [DOI:10.1115/1.1434264]
11. Dargie W, Poellabauer C. Fundamentals of wireless sensor networks: Theory and practice. New Jersey: John Wiley & Sons; 2010. [Link] [DOI:10.1002/9780470666388]
12. Zhou Z, Lin S, Xi Y, Li D, Zhang J. A hierarchical urban network control with integration of demand balance and traffic signal coordination. IFAC-PapersOnLine. 2016;49(3):31-36. [Link] [DOI:10.1016/j.ifacol.2016.07.006]
13. Tipsuwan Y, Chow M-Y. Control methodologies in networked control systems. Control engineering practice. 2003;11(10):1099-1111. [Link] [DOI:10.1016/S0967-0661(03)00036-4]
14. Moyne JR, Tilbury DM. The emergence of industrial control networks for manufacturing control, diagnostics, and safety data. Proceedings of the IEEE. 2007;95(1):29-47. [Link] [DOI:10.1109/JPROC.2006.887325]
15. Hespanha JP, Naghshtabrizi P, Xu Y. A survey of recent results in networked control systems. Proceedings of the IEEE. 2007;95(1):138-162. [Link] [DOI:10.1109/JPROC.2006.887288]
16. Navet N, Song Y, Simonot-Lion F, Wilwert C. Trends in automotive communication systems. Proceedings of the IEEE. 2005;93(6):1204-1223. [Link] [DOI:10.1109/JPROC.2005.849725]
17. Khanna A, Kaur S. Evolution of Internet of Things (IoT) and its significant impact in the field of Precision Agriculture. Computers and Electronics in Agriculture. 2019;157:218-231. [Link] [DOI:10.1016/j.compag.2018.12.039]
18. Tzounis A, Katsoulas N, Bartzanas T, Kittas C. Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering. 2017;164:31-48. [Link] [DOI:10.1016/j.biosystemseng.2017.09.007]
19. Dobrescu R, Merezeanu D, Mocanu S. Context-aware control and monitoring system with IoT and cloud support. Computers and Electronics in Agriculture. 2019;160:91-9. [Link] [DOI:10.1016/j.compag.2019.03.005]
20. Jayaraman PP, Palmer D, Zaslavsky A, Georgakopoulos D, editors. Do-it-Yourself Digital Agriculture applications with semantically enhanced IoT platform. 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). Singapore: IEEE; 2015. [Link] [DOI:10.1109/ISSNIP.2015.7106951]
21. Krishna KL, Silver O, Malende WF, Anuradha K. Internet of Things application for implementation of smart agriculture system. 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud). Canada: IEEE; 2017. [Link] [DOI:10.1109/I-SMAC.2017.8058236]
22. Palacios R, Arenas A, Pecharroman R, Pagola F. Analytical procedure to obtain internal parameters from performance curves of commercial thermoelectric modules. Applied Thermal Engineering. 2009;29(17-18):3501-355. [Link] [DOI:10.1016/j.applthermaleng.2009.06.003]
23. Lafont F, Balmat J-F. Optimized fuzzy control of a greenhouse. Fuzzy Sets and Systems. 2002;128(1):47-59. [Link] [DOI:10.1016/S0165-0114(01)00182-8]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.