Volume 20, Issue 7 (July 2020)                   Modares Mechanical Engineering 2020, 20(7): 1731-1740 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Baraheni M, Tabatabaeian A, Ghasemi A, Amini S. Enhancement of Machining Quality in Polymeric CNT-Reinforced Composites Subjected to Thermal Fatigue. Modares Mechanical Engineering 2020; 20 (7) :1731-1740
URL: http://mme.modares.ac.ir/article-15-36738-en.html
1- Mechanics Department, Mechanical Engineering Faculty, Kashan University, Kashan, Iran
2- Mechanics Department, Mechanical Engineering Faculty, Kashan University, Kashan, Iran , amini.s@kashanu.ac.ir
Abstract:   (3939 Views)
Thermal fatigue is one of the most important issues in different engineering fields. The importance of this phenomenon is its application in aerospace industries and considerable effects on the material properties. In this research, the effect of thermal fatigue on the machining quality of polymeric CNT-reinforced composites is studied. To follow this aim, initially the composite specimens with eight layers in symmetrical and unsymmetrical layups are fabricated and subjected to thermal cycling. Then, two different machining processes including conventional drilling and ultrasonic vibration assisted drilling are carried out and the thermal fatigue effects are experimentally studied. Additionally, the effects of various parameters including “addition of multi wall carbon nanotube”, “machining process” and “layup method” on machining quality of composites under thermal fatigue condition is investigated in order to obtain the least delamination. The results indicated that addition of multi-walled carbon nanotubes enhances the machining quality up to 13%. It was also revealed that the implement of ultrasonic assisted drilling could reduce the delamination damage up to 10%.
Full-Text [PDF 1144 kb]   (2180 Downloads)    
Article Type: Original Research | Subject: Composites
Received: 2019/09/23 | Accepted: 2019/12/14 | Published: 2020/10/21

References
1. Baraheni M, Shelesh-Nezhad K, Miralami A, Adli AR, Hashemi-Soudmand B. Experimental studies on morphology and impact behavior of PA6/ABS/CaCO3 nanocomposites. Journal of Science and Technology of Composites (JSTC). 2016;3(1):43-49. [Persian] [Link]
2. Hakimi E, Amini S. Study of delamination in the process helical milling of carbon fiber-reinforced polymer composite. Journal of Science and Technology of Composites (JSTC). 2016;2(4):51-58. [Persian] [Link]
3. Baraheni M, Amini S. Effects of machining parameters on delamination in drillinig of GFRP composites. The 13th Conference of Producing and Manufacturing engineering. Hormozgan: Faculty of Engineering, University of Hormozgan; 2016. [Persian] [Link]
4. Asghari B, Ghasemi AR, Tabatabaeian A. On the optimal design of manufacturing-induced residual stresses in filament wound carbon fiber composite cylindrical shells reinforced with carbon nanotubes. Composites Science and Technology. 2019;182:107743. [Link] [DOI:10.1016/j.compscitech.2019.107743]
5. Sheikh-Ahmad JY. Machining of polymer composites. Verlag US: Springer; 2009. [Link] [DOI:10.1007/978-0-387-68619-6]
6. Spur G, Lachmund U, Jahanmir S, Ramulu M, Koshy P. Turning of fiber-reinforced plastics, machining of ceramics and composites. In: Jahanmir S. Machining of Ceramics and Composites. New York: CRC Press; 1999. pp. 209-248. [Link]
7. Masuda M, Kuroshima Y, Chujo Y. Failure of tungsten carbide-cobalt alloy tools in machining of carbon materials. Wear. 1993;169(2):135-40. [Link] [DOI:10.1016/0043-1648(93)90290-3]
8. Abrao AM, Faria PE, Rubio JC, Reis P, Davim JP. Drilling of fiber reinforced plastics: A review. Journal of Materials Processing Technology. 2007;186(1-3):1-7. [Link] [DOI:10.1016/j.jmatprotec.2006.11.146]
9. Baraheni M, Amini S. Feasibility study of delamination in rotary ultrasonic-assisted drilling of glass fiber reinforced plastics. Journal of Reinforced Plastics and Composites. 2018;37(1):3-12. [Link] [DOI:10.1177/0731684417729565]
10. Amini S, Baraheni M, Hakimi E. Enhancing dimensional accuracy and surface integrity by helical milling of carbon fiber reinforced polymers. International Journal of Lightweight Materials and Manufacture. 2019;2(4):362-372. [Link] [DOI:10.1016/j.ijlmm.2019.03.001]
11. Knight WA, Boothroyd G. Fundamentals of metal machining and machine tools. Boca Raton, Florida: CRC Press; 2005. [Link]
12. Liu J, Zhang D, Qin L, Yan L. Feasibility study of the rotary ultrasonic elliptical machining of carbon fiber reinforced plastics (CFRP). International Journal of Machine Tools and Manufacture. 2012;53(1):141-150. [Link] [DOI:10.1016/j.ijmachtools.2011.10.007]
13. Baraheni M, Amini S. Predicting subsurface damage in silicon nitride ceramics subjected to rotary ultrasonic assisted face grinding. Ceramics International. 2019;45(8):10086-10096. [Link] [DOI:10.1016/j.ceramint.2019.02.055]
14. Baraheni M, Amini S. Comprehensive optimization of process parameters in rotary ultrasonic drilling of CFRP aimed at minimizing delamination. International Journal of Lightweight Materials and Manufacture. 2019;2(4):379-387. [Link] [DOI:10.1016/j.ijlmm.2019.03.003]
15. Amini S, Nazari F, Baraheni M, Ghasemi AH. Investigating the effect of rotation speed and ultrasonic vibrations in the incremental forming process. International Journal of Advanced Design & Manufacturing Technology. 2018;11(4):91-97. [Persian] [Link]
16. Amini S, Paktinat H, Barani A, Tehran AF. Vibration drilling of Al2024-T6. Materials and Manufacturing Processes. 2013;28(4):476-480. [Link] [DOI:10.1080/10426914.2012.736659]
17. Azarhoushang B, Akbari J. Ultrasonic-assisted drilling of Inconel 738-LC. International Journal of Machine Tools and Manufacture. 2007;47(7-8):1027-1033. [Link] [DOI:10.1016/j.ijmachtools.2006.10.007]
18. Pujana J, Rivero A, Celaya A, De Lacalle LL. Analysis of ultrasonic-assisted drilling of Ti6Al4V. International Journal of Machine Tools and Manufacture. 2009;49(6):500-508. [Link] [DOI:10.1016/j.ijmachtools.2008.12.014]
19. Ma CX, Shamoto E, Moriwaki T. Drilling assisted by ultrasonic elliptical vibration. Key Engineering Materials. 2005:291-292:443-446. [Link] [DOI:10.4028/www.scientific.net/KEM.291-292.443]
20. Chern G-L, Lee H-J. Using workpiece vibration cutting for micro-drilling. The International Journal of Advanced Manufacturing Technology. 2006;27(7-8):688-692. [Link] [DOI:10.1007/s00170-004-2255-8]
21. Chang SS, Bone GM. Burr height model for vibration assisted drilling of aluminum 6061-T6. Precision Engineering. 2010;34(3):369-375. [Link] [DOI:10.1016/j.precisioneng.2009.09.002]
22. Neugebauer R, Stoll A. Ultrasonic application in drilling. Journal of Materials Processing Technology. 2004;149(1-3):633-639. [Link] [DOI:10.1016/j.jmatprotec.2003.10.062]
23. Liu D, Tang Y, Cong W. A review of mechanical drilling for composite laminates. Composite structures. 2012;94(4):1265-1279. [Link] [DOI:10.1016/j.compstruct.2011.11.024]
24. Arul S, Vijayaraghavan L, Malhotra S, Krishnamurthy R. The effect of vibratory drilling on hole quality in polymeric composites. International Journal of Machine Tools and Manufacture. 2006;46(3-4):252-259. [Link] [DOI:10.1016/j.ijmachtools.2005.05.023]
25. Wang H, Sun J, Li J, Li W. Investigation on delamination morphology during drilling composite laminates. The International Journal of Advanced Manufacturing Technology. 2014;74(1-4):257-266. [Link] [DOI:10.1007/s00170-014-5973-6]
26. Phadnis VA, Makhdum F, Roy A, Silberschmidt VV. Experimental and numerical investigations in conventional and ultrasonically assisted drilling of CFRP laminate. Procedia Cirp. 2012;1:455-459. [Link] [DOI:10.1016/j.procir.2012.04.081]
27. Hocheng H, Tsao C. Effects of special drill bits on drilling-induced delamination of composite materials. International Journal of Machine Tools and Manufacture. 2006;46(12-13):1403-1416. [Link] [DOI:10.1016/j.ijmachtools.2005.10.004]
28. Mohamed M, Taheri F. Influence of graphene nanoplatelets (GNPs) on mode I fracture toughness of an epoxy adhesive under thermal fatigue. Journal of Adhesion Science and Technology. 2017;31(19-20):2105-2123. [Link] [DOI:10.1080/01694243.2016.1264659]
29. Ghasemi A, Tabatabaeian A, Moradi M. Residual stress and failure analyses of polymer matrix composites considering thermal cycling and temperature effects based on classical laminate plate theory. Journal of Composite Materials. 2018:53(21):1-7. [Link] [DOI:10.1177/0021998318812127]
30. Ghasemi AR, Tabatabaeian A, Asghari B. Application of slitting method to characterize the effects of thermal fatigue, lay-up arrangement and MWCNTs on the residual stresses of laminated composites. Mechanics of Materials. 2019;134:185-192. [Link] [DOI:10.1016/j.mechmat.2019.04.008]
31. Tabatabaeian A, Ghasemi AR. Curvature changes and weight loss of polymeric nano-composite plates with consideration of the thermal cycle fatigue effects and different resin types: an experimental approach. Mechanics of Materials. 2019;131:69-77. [Link] [DOI:10.1016/j.mechmat.2019.01.017]
32. Heidari-Rarani M, Aliha M, Shokrieh M, Ayatollahi M. Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings-An experimental study. Construction and Building Materials. 2014;64:308-315. [Link] [DOI:10.1016/j.conbuildmat.2014.04.031]
33. Singh RP, Singhal S. Rotary ultrasonic machining: A review. Materials and Manufacturing Processes. 2016;31(14):1795-1824. [Link] [DOI:10.1080/10426914.2016.1140188]
34. Tsao C, Hocheng H. Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network. Journal of Materials Processing Technology. 2008;203(1-3):342-348. [Link] [DOI:10.1016/j.jmatprotec.2006.04.126]
35. Feito N, Díaz-Álvarez J, Díaz-Álvarez A, Cantero J, Miguélez M. Experimental analysis of the influence of drill point angle and wear on the drilling of woven CFRPs. Materials. 2014;7(6):4258-71. [Link] [DOI:10.3390/ma7064258]
36. Amini S, Baraheni M, Moeini Afzal M. Statistical study of the effect of various machining parameters on delamination in drilling of carbon fiber reinforced composites. Journal of Science and Technology of Composites. 2018;5(1):41-50. [Link]
37. Tabatabaeian A, Ghasemi AR, Asghari B. Specification of non-uniform residual stresses and tensile characteristic in laminated composite materials exposed to simulated space environment. Polymer Testing. 2019;80:106147. [Link] [DOI:10.1016/j.polymertesting.2019.106147]
38. Razfar M. Machining and tool principles. Tehran: Amirkabir University; 2011. pp. 185-205. [Persian] [Link]
39. Unknown Author. Machining and cutting tools. Kashan: Kashan University; 2013. [Persian] [Link]
40. Baraheni M, Amini S. Study of the effect of machining parameters on delamination in rotary ultrasonic machining process of glass fiber reinforced polymer composite by diamond core tool. Journal of Science and Technology of Composites. 2017;4(1):67-73. [Persian] [Link]
41. Amini S, Baraheni M, Mardiha A. Parametric investigation of rotary ultrasonic drilling of carbon fiber reinforced plastics. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2018;232(5):540-554. [Link] [DOI:10.1177/0954408917727199]
42. Brehl D, Dow T. Review of vibration-assisted machining. Precision Engineering. 2008;32(3):153-172. [Link] [DOI:10.1016/j.precisioneng.2007.08.003]
43. Cong W, Pei ZJ, Treadwell C. Preliminary study on rotary ultrasonic machining of CFRP/Ti stacks. Ultrasonics. 2014;54(6):1594-1602. [Link] [DOI:10.1016/j.ultras.2014.03.012]
44. Khashaba U. Delamination in drilling GFR-thermoset composites. Composite Structures. 2004;63(3-4):313-327. [Link] [DOI:10.1016/S0263-8223(03)00180-6]
45. Tabatabaeian A, Ghasemi AR. Curvature changes and weight loss of polymeric nano-composite plates with consideration of the thermal cycle fatigue effects and different resin types: An experimental approach. Mechanics of Materials. 2019;131:69-77. [Link] [DOI:10.1016/j.mechmat.2019.01.017]
46. Akbari S, Taheri-Behrooz F, Shokrieh M. Characterization of residual stresses in a thin-walled filament wound carbon/epoxy ring using incremental hole drilling method. Composites Science and Technology. 2014;94:8-15. [Link] [DOI:10.1016/j.compscitech.2014.01.008]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.