Volume 20, Issue 6 (June 2020)                   Modares Mechanical Engineering 2020, 20(6): 1635-1645 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hashemi S, Rahmani F, Seyedkashi S. Numerical and Experimental Investigation of Forming Limit Diagram in Warm Incremental Forming Process of Aluminum Tubes. Modares Mechanical Engineering 2020; 20 (6) :1635-1645
URL: http://mme.modares.ac.ir/article-15-38356-en.html
1- Mechanical Engineering Department, Enghelab-e Eslami Faculty, Technical & Vocational University (TVU), Tehran, Iran
2- Mechanical Engineering Faculty, Kar Higher Education Institute, Qazvin, Iran
3- Mechanical Engineering Department, Engineering Faculty, University of Birjand, Birjand, Iran , seyedkashi@birjand.ac.ir
Abstract:   (2507 Views)
Incremental tube forming process is capable of manufacturing tubes with different cross sections and dimensions using simple and inexpensive forming tools. In the current study, seven different ductile failure criteria are used in finite element simulations in order to obtain the forming limit diagram (FLD) of Al6063 aluminium tubes at high temperatures. The predicted FLD using these criteria are compared with experimental data to select the optimum criterion. Standard universal tensile tests in different temperatures and strain rates along with Zener-holloman parameter are performed to calibrate the failure criteria. The effects of process parameters including temperature, forming depth and forming feed are considered. The results showed that failure criteria can predict the time and location of rupture in incremental tube forming process with a good accuracy. In high temperatures, Cockroft-Latham and normalized Cockroft-Latham criteria which consider the effect of the largest tensile stress had the best prediction. Investigation of temperature and strain rate showed that by increasing temperature, the forming limit goes higher but increasing strain rate causes to decrease it.
Full-Text [PDF 1085 kb]   (1848 Downloads)    
Article Type: Original Research | Subject: Mechatronics
Received: 2019/11/19 | Accepted: 2020/03/9 | Published: 2020/06/20

References
1. Iseki H, Naganawa T, Kato K. Flexible and incremental sheet metal bulging using a path-controlled spherical roller : 2nd report, vertical wall surface forming of rectangular shell using multistage incremental forming with spherical and cylindrical rollers. Transactions of Japanese Society of Mechanical Engineering. 1996;62(596):1600-1605. [Link] [DOI:10.1299/kikaic.62.1600]
2. Attanasio A, Ceretti E, Giardini C, Mazzoni L. Asymmetric two points incremental forming: improving surface quality and geometric accuracy by tool path optimization. Journal of Materials Processing Technology. 2008;197(1-3):59-67. [Link] [DOI:10.1016/j.jmatprotec.2007.05.053]
3. Zahedi A, Mollaei-Dariani B, Morovvati MR. Numerical and experimental investigation of single point incremental forming of two layer sheet metals. Modares Mechanical Engineering. 2015;14(14):1-8. [Persian] [Link]
4. Nikdooz AH, Mirnia MJ, Baseri H. Study of formability of aluminum truncated pyramid in single-stage and two-stage incremental sheet forming. Modares Mechanical Engineering. 2016;16(5):210-220. [Persian] [Link]
5. Prakashbhai Marathe Sh, Kishorchandra Raval H. Numerical investigation on forming behavior of friction stir tailor welded blanks (FSTWBs) during single-point incremental forming (SPIF) process. Journal of Brazilian Society of Mechanical Sciences and Engineering. 2019;41(10):424. [Link] [DOI:10.1007/s40430-019-1929-y]
6. Ambrogio G, Filice L, Manco G. Warm incremental forming of magnesium alloy AZ31. CIRP Annals. 2008;57(1):257-260. [Link] [DOI:10.1016/j.cirp.2008.03.066]
7. Ji Y, Park J. Formability of magnesium AZ31 sheet in the incremental forming at warm temperature. Journal of Materials Processing Technology. 2008;201(1-3):354-358. [Link] [DOI:10.1016/j.jmatprotec.2007.11.206]
8. Ji Y, Park J. Incremental forming of free surface with magnesium alloy AZ31 sheet at warm temperatures. Transactions of Nonferrous Metals Society of China. 2008;18(1):165-169. [Link] [DOI:10.1016/S1003-6326(10)60195-1]
9. Fan G, Gao L, Hussain G, Wu Z. Electric hot incremental forming: A novel technique. International Journal of Machine Tools and Manufacture. 2008;48(15):1688-1692. [Link] [DOI:10.1016/j.ijmachtools.2008.07.010]
10. Fan G, Sun F, Meng X, Gao L, Tong G. Electric hot incremental forming of Ti-6Al-4V titanium sheet. The International Journal of Advanced Manufacturing Technology. 2010;49(9-12): 941-947. [Link] [DOI:10.1007/s00170-009-2472-2]
11. Zhang Q, Guo H, Xiao F, Gao L, Bondarev A, Han W. Influence of anisotropy of the magnesium alloy AZ31 sheets on warm negative incremental forming. Journal of Materials Processing Technology. 2009;209(15-16):5514-5520. [Link] [DOI:10.1016/j.jmatprotec.2009.05.012]
12. Roohi H, Deilami Azodi H, Safari M. Investigation of forming limit of aluminum sheet in warm incremental forming process. Modares Mechanical Engineering. 2019;19(2):259-268. [Persian] [Link]
13. Taherkhani A, Basti A, Narimanzadeh N, Jamali A. Tool frictional stir effect on dimensional accuracy and formability in single point incremental forming at high rotational speeds. Modares Mechanical Engineering. 2017;16(12):665-674. [Persian] [Link]
14. Honarpisheh M, Abdolhoseini MJ, Amini S. Experimental and numerical investigation of the hot incremental forming of Ti-6Al-4V sheet using electrical current. The International Journal of Advanced Manufacturing Technology. 2016;83(9-12):2027-2037. [Link] [DOI:10.1007/s00170-015-7717-7]
15. Kim SW, Lee YS, Kang SH, Lee JH. Incremental forming of Mg alloy sheet at elevated temperatures. Journal of Mechanical Science and Technology. 2007;21(10):1518. [Link] [DOI:10.1007/BF03177368]
16. Mohamed FA, El-Abden SZ, Abdel-Rahman M. A rotary flange forming process on the lathe using a ball-shaped tool. Journal of Materials Processing Technology. 2005;170(30):501-508. [Link] [DOI:10.1016/j.jmatprotec.2004.12.017]
17. Yang C, Wen T, Liu LT, Zhang S, Wang H. Dieless incremental hole-flanging of thin-walled tube for producing branched tubing. Journal of Materials Processing Technology. 2014;214(11):2461-2467. [Link] [DOI:10.1016/j.jmatprotec.2014.05.027]
18. Teramae T, Manabe K, Ueno K, Nakamura K, Takeda H. Effect of material properties on deformation behavior in incremental tube-burring process using a bar tool. Journal of Materials Processing Technology. 2007;191(1-3):24-29. [Link] [DOI:10.1016/j.jmatprotec.2007.03.039]
19. Wen T, Yang C, Zhang S, Liu L. Characterization of deformation behavior of thin-walled tubes during incremental forming: a study with selected examples. The International Journal of Advanced Manufacturing Technology. 2015;78(9-12):1769-1780. [Link] [DOI:10.1007/s00170-014-6777-4]
20. Seyedkashi SMH, Hashemi SJ, Rahmani F. Experimental investigation of effective parameters on a new incremental tube bulging method using rotary tool. International Journal of Advanced Design and Manufacturing Technology. 2017;10(2):83-91. [Link]
21. Rahmani F, Seyedkashi SMH, Hashemi SJ. Converting circular tubes into square cross-sectional parts using incremental forming process. Transactions of Nonferrous Metals Society of China. 2019;29(11):2351-2361. [Link] [DOI:10.1016/S1003-6326(19)65141-1]
22. Xiao YH, Guo C. Constitutive modelling for high temperature behavior of 1Cr12Ni3Mo2VNbN martensitic steel. Materials Science and Engineering: A. 2011;528(15):5081-5087. [Link] [DOI:10.1016/j.msea.2011.03.050]
23. Frost HJ, Ashby MF. Deformation mechanism maps: The plasticity and creep of metals and ceramics. 1st Edition. Oxford: Pergamon Press; 1982. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.