Volume 22, Issue 4 (April 2022)                   Modares Mechanical Engineering 2022, 22(4): 243-252 | Back to browse issues page


XML Persian Abstract Print


1- Department of Mechanical Engineering, University of Kashan, Kashan, Iran.
2- Department of Mechanical Engineering, University of Kashan, Kashan, Iran. , ghasemi@kashanu.ac.ir
Abstract:   (2332 Views)
The laser cladding of industrial parts to improve their mechanical properties by metal alloys and composites has been a challenge for scientists and experts. The quality and properties of the cladding layer are determined by many factors such as cladding geometry, microstructure, dilution ratio, defects, distortion, surface smoothness, metallurgical changes in the substrate and process efficiency. In this study, the effect of important parameters of the cladding process on the geometric shape, hardness and dilution ratio of the cladding layers of martensitic stainless steel (17-4 PH ) on the substrate of plain carbon steel by solid-state continuous laser with maximum power 2 kW and the method of direct deposition of metal powder are discussed. Variable parameters of laser cladding including powder feed rate, laser scanning speed and laser power have been studied. The parameters of surface quality, geometric shape and absence of porosity have been evaluated and compared. The minimum dilution about 9% was obtained at a 10 mm/s scanning speed, 10 g/min powder feed rate and 330 watts laser power. The results have been showed, appropriate incorporation and uniform distribution of cladding powder has created a cladding surface without any crack and porosity. By studying the hardness of the samples, it has been concluded that the hardness of the substrate surface has increased after cladding.
Full-Text [PDF 974 kb]   (1157 Downloads)    
Article Type: Original Research | Subject: Composites
Received: 2021/06/27 | Accepted: 2021/10/6 | Published: 2022/03/30

References
1. L. Zhu, P. Xue, Q. Lan, G. Meng, Y. Ren, Z. Yang, P. Xu, Z. Liu, Recent research and development status of laser cladding: A review, Optics & Laser Technology, vol. 138, article ID. 106915, 2021, [DOI:10.1016/j.optlastec.2021.106915]
2. Z. Chen, H. Yan, P. Zhang, Z. Yu, G. Guo, Microstructural evolution and wear behavior of laser-clad Stellite 6/NbC/h-BN self-lubricating coating , Surface and Coating Technology, vol. 372, pp. 218-228, 2019. [DOI:10.1016/j.surfcoat.2019.04.083]
3. Z. Zhang, R. Kovacevic, laser cladding of iron-based erosion resistant metal matrix composite, Journal of manufacturing processes, vol. 38, pp. 63-75, 2019. [DOI:10.1016/j.jmapro.2019.01.001]
4. F. Wirth, K. Wegener, A physical modeling and predictive simulation of the laser cladding process. Addit Manuf, vol. 22, pp. 307-319, 2018. [DOI:10.1016/j.addma.2018.05.017]
5. F. Brückner, D. Lepski, E. Beyer, Modeling the Influence of Process Parameters and Additional Heat Sources on Residual Stresses in Laser Cladding. Journal of Thermal Spray Technology, vol.16 (3), pp. 355-373, 2007. [DOI:10.1007/s11666-007-9026-7]
6. Q. Meng, L. Geng, B. Zhang, Laser cladding of Ni-base composite coating onto Ti-6Al-4V substrates with pre-placed B4C+NiCrBSi powders, Surface and Coating Technology , vol. 200, pp.4923-4928, 2006 [DOI:10.1016/j.surfcoat.2005.04.059]
7. U. de Oliveira, V. Ocelik, J. Th. M. De Hosson, Analysis of coaxial laser cladding processing conditions, Surface and Coating Technology, vol. 201, pp.127-136, 2005. [DOI:10.1016/j.surfcoat.2004.06.029]
8. O. Nenadl, V. Ocelik, A. Palavra, J. Th. M. De Hosson, The prediction of coating geometry from main processing parameters laser cladding, Physics Procedia, vol. 56, pp.220-227, 2014. [DOI:10.1016/j.phpro.2014.08.166]
9. M. Ansari, R. Shoja Razavi, M. Barekat, An empirical-statiscal model for coaxial laser cladding of NiCrAlY powder on Inconel 738 superalloy, Optics & Laser Technology , vol. 86, pp.136-144, 2016. [DOI:10.1016/j.optlastec.2016.06.014]
10. R. Vilar, A. Almeida, Laser surface treatment of biomedical alloys, New York Book Chapter: Elsevier, 2016. [DOI:10.1016/B978-0-08-100883-6.00002-2]
11. J. Ju, Y. Zhou, M. Kang, et al, Optimization of process parameters, microstructure, and properties of laser cladding Fe-based alloy on42CrMo steel roller, Materials, vol. 11, pp. 2061-2076, 2018. [DOI:10.3390/ma11102061]
12. L. Reddy, S.P. Preston, P.H. Shipway, C. Davis, T. Hussain, Process parameter optimisation of laser clad iron based alloy: Predictive models of deposition efficiency, porosity and dilution, Surface and Coatings Technology, vol. 349, pp. 198-207, 2018. [DOI:10.1016/j.surfcoat.2018.05.054]
13. J. T. Hofman, D. F. de Lange, B. Pathiraj, et al, FEM modeling and experimental verification for dilution control in laser cladding, Journal of Materials Processing Technology, vol. 211, pp. 187-196, 2011. [DOI:10.1016/j.jmatprotec.2010.09.007]
14. J. Pekkarinen, V. Kujanpa, A.Salminen, Laser cladding with scanning optics: Effect of power adjustment, Journal of Laser Applications, vol. 24, pp. 032003-032010, 2012. [DOI:10.2351/1.4706582]
15. W. E. Frazier, Metal additive manufacturing: A review, Journal of Materials Engineering and Performance, vol. 23, pp. 1917-1928, 2014. [DOI:10.1007/s11665-014-0958-z]
16. E. Foroozmehr, D. Lin, R. Kovacevic, Application of vibration in the laser powder deposition process, Journal of Manufacturing Processes, Vol. 11, pp. 38-44, 2009. [DOI:10.1016/j.jmapro.2009.07.002]
17. H. El Cheikh, B. Courant, S. Branchu, J. Y. Hascoet, R. Guillen, Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process, Optics & Lasers Engeneering. Vol.50, pp. 413-422, 2012. [DOI:10.1016/j.optlaseng.2011.10.014]
18. Y. Javid, M. Ghoreishi, M. J. Torkamany, Preplaced laser cladding of WC powder on Inconel 718 by Nd:YAG laser, Modares Mechanical Engineering, Vol. 15, No. 7, pp. 98-106, 2015 (In Persian).
19. M. Barekat, R. Shoja Razavi, A. Ghasemi, Nd:YAG laser cladding of Co-Cr-Mo alloy on γ-TiAl substrate, Optics & Laser Technology. vol. 80, pp. 145-152, 2016. [DOI:10.1016/j.optlastec.2016.01.003]
20. M. Ibrahim, A.A.D. Sarhan, T.Y. Kuo, M. Hamdi, Farazila Yusof, Advancement of the artificial amorphous-crystalline structure of laser cladded FeCrMoCB on nickel-free stainless-steel for bone-implants, Materials Chemistry and Physics, vol. 227, pp. 358-367, 2019. [DOI:10.1016/j.matchemphys.2018.12.104]
21. Y. Qiao, J. Huang, D. Huang, J. Chen, W. Liu, Z. Wang, Z. Zhibin, Effect of laser scanning speed on microstructure, microhardness and corrosion behavior of laser cladding Ni45 coating, Journal of Chemistry, vol. 2020, Article ID 1438473, 11 pages, 2020. [DOI:10.1155/2020/1438473]
22. T. Akinlabi, A. Bayode, Surface modification of Ti4Al6V alloy by laser cladding with 17-4PH stainless steel powder, Advances in Material Sciences and Engineering, pp. 465-471, 2020. [DOI:10.1007/978-981-13-8297-0_48]
23. D. Wu, M. Guo, G. Ma, et al, Dilution characteristics of ultrasonic assisted laser clad yttria-stabilized zirconia coating, Surface and Coating Technology, vol. 79, pp. 200-204, 2015. [DOI:10.1016/j.matlet.2014.11.058]
24. W. Xi, B. Song, Y. Zhao, T. Yu, J. Wang, Geometry and dilution rate analysis and prediction of laser cladding, Int J Adv Manuf Technol, vol. 103, pp. 4695-4702, 2019. [DOI:10.1007/s00170-019-03932-7]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.