1. Sanford, R., Principles of Fracture Mechanics. 2003. Upper Saddle River: Prentice Hall.
2. Dieter, G.E. and D.J. Bacon, Mechanical metallurgy. Vol. 3. 1986: McGraw-hill New York.
3. Hosford, W.F. and R.M. Caddell, Metal forming: mechanics and metallurgy. 2011: Cambridge University Press. [
DOI:10.1017/CBO9780511976940]
4. Anderson, T.L., Fracture mechanics: fundamentals and applications. 2017: CRC press. [
DOI:10.1201/9781315370293]
5. Lemaitre, J., A continuous damage mechanics model for ductile fracture. Journal of engineering materials and technology, 1985. 107(1): p. 83-89. [
DOI:10.1115/1.3225775]
6. Iraj, N.V., An Investigation on the limit drawing using GTN damage model in tube drawing process, in Mechanical Engineering. 2017, Ferdowsi University of Mashhad: Iran. p. 99.
7. Gatea, S., et al., Modelling of ductile fracture in single point incremental forming using a modified GTN model. Engineering Fracture Mechanics, 2017. 186: p. 59-79. [
DOI:10.1016/j.engfracmech.2017.09.021]
8. Teng, B., W. Wang, and Y. Xu, Ductile fracture prediction in aluminium alloy 5A06 sheet forming based on GTN damage model. Engineering Fracture Mechanics, 2017. 186: p. 242-254. [
DOI:10.1016/j.engfracmech.2017.10.014]
9. Thuillier, S., N. Le Maoût, and P.-Y. Manach, Influence of ductile damage on the bending behaviour of aluminium alloy thin sheets. Materials & Design, 2011. 32(4): p. 2049-2057. [
DOI:10.1016/j.matdes.2010.11.050]
10. Wu, H., et al., Mechanism of increasing spinnability by multi-pass spinning forming-Analysis of damage evolution using a modified GTN model. International Journal of Mechanical Sciences, 2019. 159: p. 1-19. [
DOI:10.1016/j.ijmecsci.2019.05.030]
11. Gholipour, H., F. Biglari, and K. Nikbin, Experimental and numerical investigation of ductile fracture using GTN damage model on in-situ tensile tests. International Journal of Mechanical Sciences, 2019. 164: p. 105170. [
DOI:10.1016/j.ijmecsci.2019.105170]
12. Sun, Q., Y. Lu, and J. Chen, Identification of material parameters of a shear modified GTN damage model by small punch test. International Journal of Fracture, 2020: p. 1-11. [
DOI:10.1007/s10704-020-00428-4]
13. Lou, Y. and H. Huh, Extension of a shear-controlled ductile fracture model considering the stress triaxiality and the Lode parameter. International Journal of Solids and Structures, 2013. 50(2): p. 447-455. [
DOI:10.1016/j.ijsolstr.2012.10.007]
14. Permeh, M., Prediction of Failure in High Temperature Using GTN Model and Finite Element Simulation in AA 5083 Sheets, in Manufacturing Engineering. 2015, Babol Noshirvani University of Technology: Iran. p. 100.
15. Abbasi, M., et al., Application of response surface methodology to drive GTN model parameters and determine the FLD of tailor welded blank. Computational Materials Science, 2012. 53(1): p. 368-376. [
DOI:10.1016/j.commatsci.2011.08.020]
16. Bettaieb, M.B., et al., On the numerical integration of an advanced Gurson model. International journal for numerical methods in engineering, 2011. 85(8): p. 1049-1072. [
DOI:10.1002/nme.3010]
17. Cao, T.-S., et al., A comparative study of three ductile damage approaches for fracture prediction in cold forming processes. Journal of Materials Processing Technology, 2015. 216: p. 385-404. [
DOI:10.1016/j.jmatprotec.2014.10.009]
18. Malcher, L., F.A. Pires, and J.C. De Sá, An extended GTN model for ductile fracture under high and low stress triaxiality. International Journal of Plasticity, 2014. 54: p. 193-228. [
DOI:10.1016/j.ijplas.2013.08.015]
19. Malcher, L., et al., Evaluation of shear mechanisms and influence of the calibration point on the numerical results of the GTN model. International Journal of Mechanical Sciences, 2013. 75: p. 407-422. [
DOI:10.1016/j.ijmecsci.2013.08.008]
20. Malcher, L., F.A. Pires, and J.C. De Sá, An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality. International Journal of Plasticity, 2012. 30: p. 81-115. [
DOI:10.1016/j.ijplas.2011.10.005]
21. Mirnia, M.J. and M. Shamsari, Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion. Journal of Materials Processing Technology, 2017. 244: p. 17-43. [
DOI:10.1016/j.jmatprotec.2017.01.029]
22. Shen, Y., et al., Experimental and numerical characterization of anisotropic damage evolution of forged Al6061-T6 alloy. Procedia Engineering, 2011. 10: p. 3429-3434. [
DOI:10.1016/j.proeng.2011.04.565]
23. Le Maoût, N., S. Thuillier, and P.-Y. Manach, Aluminum alloy damage evolution for different strain paths-Application to hemming process. Engineering Fracture Mechanics, 2009. 76(9): p. 1202-1214. [
DOI:10.1016/j.engfracmech.2009.01.018]
24. Talebi-Ghadikolaee, H., et al., Fracture analysis on U-bending of AA6061 aluminum alloy sheet using phenomenological ductile fracture criteria. Thin-Walled Structures, 2020. 148: p. 106566. [
DOI:10.1016/j.tws.2019.106566]