Alireza Moradkhani, , M T,
Volume 12, Issue 6 (3-2013)
Abstract
Abstract- Unique properties of boron carbide (B4C) such as high hardness, low density, and comprehensive area for Neutron attraction, have turned this material into a very suitable candidate for many industrial applications such as nuclear facilities and light armored plates. According to inappropriate sinter ability of boron carbide, phenolic resin was utilized as sintered help for this ceramic. Different free additive samples of B4C with 5wt% phenolic resin were prepared and sintered at 2200°C. Then their physical and mechanical properties were investigated. Results show that the relative density of samples including 5wt% phenolic resin is equal to %95 and for samples without additive is equal to %82 of theoretical density. Furthermore, it can be seen an improvement in mechanical properties in comparison of free additives samples; so that the flexural strength from 264 to 318MPa, the modulus of elasticity from 445 to 465GPa, Vickers hardness from 3020 to 3150GPa and fracture toughness from 2.6 to 4.2MPa.m1/2 will be improved.
Mohammad Tehrani, Nader Narimanzadeh, Mojtaba Masoumnezhad,
Volume 17, Issue 4 (6-2017)
Abstract
The early success in the 1960s of the Kalman filter in aerospace applications led to attempts to apply it to more common industrial applications in the 1970s. However, these attempts quickly made it clear that a serious mismatch existed between the underlying assumptions of Kalman filters and industrial state estimation problems. Accurate system models and statistical nature of the noise processes are not as readily available for industrial problems. In this paper, a novel method of combining two nonlinear unscented Kalman filter and "H" _∞ unscented Kalman filter is presented so that the results are a compromise between in addition of more reliability compared to that of two other filters. One characteristic of this filter is no need to linearize of the nonlinear problems and gives more suitable results than other two filters with non-Gaussian noise. Investigations show, when in a part of estimating the UKF is best and in the other part the UHF, the hybrid filter can give better results with present a compromise estimation. The variance analysis indicated that the filter is robust to statistical noise nature and a proper response can be found by changing its variable. Validation of results is performed by simulation of two nonlinear problems, free falling and inverted pendulum in mechanical engineering.
Javad Rahman Nezhad, Seyed Ali Mirbozorgi,
Volume 17, Issue 4 (6-2017)
Abstract
In this paper, a new immersed boundary-lattice Boltzmann method (IB-LBM) is developed to simulate heat transfer problems with constant heat flux boundary condition. In this method, the no-slip boundary condition is enforced via implicit velocity correction method and the constant heat flux boundary condition is implied considering the difference between the desired heat flux and the estimated one. The velocity correction represented as a forcing term is added to Boltzmann equation and for temperature correction, a heat source/sink term is introduced to energy equation. Elimination of sophisticated grid generation process, simplicity and effectiveness while keeping the accuracy, are the main advantages of the proposed method. Using the developed method, natural convection around a hot circular cylinder with constant heat flux in an enclosure with cold walls has been simulated at Rayleigh numbers of 103–106. Moreover, effects of diagonal position of cylinder on the flow and heat transfer patterns and local Nusselt number distribution on the surface of cylinder and walls of enclosure have been investigated. The obtained results show that the location of maximum local Nusset number is extremely depended on the diagonal position of the cylinder. According to the results of this simulation, it can be said that the present method is able to imply accurately the constant heat flux boundary condition.
Sina Sabbaghi Farshi, Amir Rasti, Mohammad Hossein Sadeghi, Javad Hashemi Khosrowshahi,
Volume 17, Issue 10 (1-2018)
Abstract
Adel Ismaily, Mostafa Varmazyar, Mohsen Varmazyar,
Volume 18, Issue 1 (3-2018)
Abstract
Optimization of the arrangement of turbines with the aim of producing the maximum power in a wind farm is inherently part of continuous and nonlinear problems. In the present study, for the linearization of the Wake constraint and the connection between turbine power and single Wake and discrete models. Also, the criterion of placing a turbine in another turbine has been applied indirectly and linearly. The proposed mathematical model compares to continuous nonlinear mathematical models, while maintaining the advantage of achieving exact optimum, has a lower runtime and higher stability. Comparison of the results of the present study with the results of previous studies suggests that metaheuristics algorithms may not be obtained in absolute optimal answer. In addition to the power output, environmental issues can also affect the arrangement of turbines. As an example, the maximum noise level is applied in the present model. In order to calculate the intensity of sound, Euclidean distance based on the spread of the hemisphere and the effects of atmospheric absorption has been used. According to the results, it can be said that under the conditions under consideration, the noise level can cause a significant reduction in the output power of the wind farm. Therefore, in selecting the field, attention should be paid to the distance to residential areas. In addition, the effect of cell count on the accuracy of the results was investigated. The results show that there is no clear relationship between optimal power and number of cells.
M. Navabi, M.r. Hosseini,
Volume 18, Issue 1 (3-2018)
Abstract
The rotational Equations of motion of spacecraft are generally nonlinear, so use of nonlinear control techniques are helpful in real conditions. Feedback linearization theory is a nonlinear control technique which transforms nonlinear system dynamics into a new form that linear control techniques can be applied. Choosing output functions in input-output linearization which is a specific method of feedback linearization, has a significant effect on internal dynamics stability. In this study the kinematic equations of spacecraft motion are expressed by quaternion parameters, these parameters are selected as output functions. Linear quadratic regulator as a linear optimal control law is used to design a controller for linearized system in feedback linearization control and also to design attitude control of spacecraft separately. By considering the actuator constraints on different control methods that are used here, the EULERINT which is the integral of the Euler angles error about the Euler axis, is evaluated. Then, the power and control effort of the actuators are considered for comparison between controllers. The simulation results show that the amount of EULERINT for feedback linearization method is less among the others. Also study of the power and control effort shows that Feedback linearization method is not only quicker but also more efficient and displays better performance of the actuators.
Saeed Farsad, Mohammed Ali Ardekani, Foad Farhani,
Volume 18, Issue 4 (8-2018)
Abstract
measurement accuracy. The angular response of the sensor describes the relationship between flow velocity vector and heat transfer from the sensor, which is determined by a sensitivity function. In this paper, two sensitivity functions, namely cosine law and Hinze equation, have been studied using wind tunnel experiments to evaluate the effect of various parameters such as flow conditions (velocity and direction), probe aspect ratio (l/d) and probe operational condition (sensor temperature) on the range of applicability of cosine law and magnitude of the sensitivity coefficient, k. Results show that the angular range of applicability of cosine law depends on flow and probe conditions. At 1% measurement error, the range of applicability of cosine law for flow measurements of velocities exceeding 10 m/s was found to be in the range of ±30º. Moreover, at geometrical ratios higher than 600, two-dimensional flow measurements using the cosine law presents results with acceptable accuracy. In addition, the sensitivity coefficient is completely dependent on flow condition and probe aspect ratio, and its value decreases with increase in flow angle and velocity and reduction in probe aspect ratio. The results of this research can be used in the selection and proper design of probes for two-dimensional flow measurements using hot wire anemometers.
Shidokht Rashiddadash, Mojtaba Sadighi, ,
Volume 18, Issue 4 (8-2018)
Abstract
Large and/or complicated sandwich structures are often manufactured by connecting pre-fabricated sandwich panels by means of connections, adhesive or bolts. In nearly all sandwich constructions certain types of joints have to be used for assembly but little is known about their mechanical behavior. This paper deals with the investigation of the behavior of two aluminum joints with different geometries under low velocity impact tests. These two joints are used to connecting sandwich panels with glass-epoxy skins and aluminum honeycomb core. The joints and sandwich panels are connected by means of epoxy resin. After construction of the specimens, low velocity impact tests were performed on the specimens. Finite element analysis were used to simulate the behavior of sandwich panels with connection. Verification of the numerical results was performed by comparing the numerical and experimental results. There was a good compliance between numerical and experimental results. Also, the effect of increasing the length and the thickness of the connections on the behavior of the sandwich panel was done through a parametric study using the FEM model.
Hasan Mansoori, ,
Volume 18, Issue 4 (8-2018)
Abstract
In this study, the effects of impact of a projectile on a fuel tank are studied using the finite element method and compared with experimental method. Due to penetration of the bullet into the tank, large internal pressures from the fluid are imposed on the tank's walls which can damage it. The considered fluid structure interaction (FSI) problem is solved in an Eulerian-Lagrangian reference frame by using the LS-Dyna software. By comparing of the results obtained from the simulations and the experimental data, it can be seen that the LS-Dyna software is able to model the different phases of event accurately. In previous researches mostly the penetration and cavitation phases are investigated numerically. In this paper all phases namely penetration, cavitation, stresses applied to tank’s walls and bullet exit are investigated. The comparison between the Von Mises stress of walls in the fluid-filled tank and the empty one signifies 30 percent growth of the maximum Von Mises stress in the wall of the fluid-filled tank compared to the walls of the empty tank. Also in addition to what has been done in previous numerical works, the failure mode of fluid-filled tanks are determined numerically. The numerical results show that because fluid-filled tank walls are pre-stress due to the fluid shock waves, the failure mode of fluid-filled tank is quite different with the failure mode of the empty one.
Mehran Abdolalipouradl, Shahram Khalilarya, Samad Jafarmadar,
Volume 18, Issue 4 (8-2018)
Abstract
The use of new energies, including geothermal energy, is rapidly devoloping in the world. In Iran, the Sabalan area has a great potential for generating energy from geothermal energy sources. In this paper, a new power generation combined cycle (flash combined cycle with supercritical carbon dioxide and organic Rankine cycle) is proposed with respect to two wells with different temperatures and pressures for Sabalan geothermal sources. For the organic Rankine cycle, four fluids are considered appropriately and then proposed combination cycle is investigated by energy and exergy analysis. In this study, a new method proposed for the determination of Pinch point for carbon dioxide heat exchangers. In the end the proposed cycle has been optimized relative to seprators pressure, the second evaporator temperature and the carbon dioxide cycle pressure ratio. The results show that the n-butane agent has been selected as the most suitable fluid for the Rankine cycle. For the optimal condition, the net power of the proposed cycle is 19934 kW, the cycle efficiency will be 17.05% and the exergy efficiency will be65.38 %.The results of exergy analysis show that the low pressure turbine in geothermal have the highest value of exergy destruction. The results show that net power output, energy and exergy efficiencies of the proposed cycle in this paper is 15.29 %, 17.06% and 18.35% higher than the corresponding values obtained for the previously proposed system.
Mojtaba Haghgoo, Reza Ansari, Abolfazl Darvizeh, Mohammad Kazem Hassanzadeh-Aghdam,
Volume 18, Issue 4 (8-2018)
Abstract
In this research, an analytical method is presented for predicting the viscoelastic and dynamic behavior of polymer nanocomposite. The analytical model is achieved by coupling the SUC micromechanical model with standard linear solid model. Boltzmann superposition principle is used to develop the constitutive equations. First, the strain associated with a relaxation experiment is considered, and then by using the idea of linearity as embodied in the Boltzmann superposition principle, the resulting stress history is predicted. Eventually, the creep function corresponding to the relaxation modulus is obtained and the hysteresis loop for nanocomposite material is represented. Creep response is sinusoidal in time and a function of stress history. Loss and storage modulus and material behavior in Laplace domain are obtained using standard linear solid model and SUC micromechanical model, respectively. Standard linear solid model is achieved by paralleling the Kelvin model with Maxwell model. The model is validated with experimental results. Effects of different interphase thickness, CNT volume fraction and phase angle on hysteresis loop is studied. Obtained results reveal that increasing the CNT volume fraction and phase angle leads to decreasing and increasing the nanocomposite hysteresis loop area, respectively. Also, Interphase thickness contains considerable effects on the nanocomposite dynamic behavior.
Sarallah Abbasi, Afshin Gholamalipoor,
Volume 18, Issue 4 (8-2018)
Abstract
Turbine tip leakage flow is one of the effective factors in reducing the efficiency and performance of axial turbines, which can also destroy turbine blades. Accordingly, it is important to identify and control the tip leakage flow. In this paper, we investigate the effect of tip clearance sizes and changes in tip shape as a passive control method on tip structure and total turbine flow performance. For this purpose, the flow loss in a two-stage axial turbine is performed using the CFX software. In order to ensure the accuracy of the results, the turbine performance curves were compared with the experimental results which good consistency have been observed. Considering the four cases for tip clearance size, the turbine performance curves and resulting pressure loss have been investigated. It was found that increasing the tip clearance size leads to reduced efficiency and increased losses in the axial turbine. In the following, we examine the application of the passive control method through the change of the tip geometry. In this regard, the shape of the blade tip is somehow considered that the tip clearance size is variable from leading edge to trailing edge. The results show that in these cases, tip leakage flow and the resulting vertices are weakened, which leads to a decrease in the rotor loss coefficient. Observing the flow contours results in lower temperatures in the blade region due to the formation of a weaker tipping leak flow, which helps cool the turbine blades.
Tayyeb Nazghelichi, Farschad Torabi, Vahid Esfahanian,
Volume 18, Issue 4 (8-2018)
Abstract
Increasing of capacity in lead-acid batteries and reducing charging time in lower temperature are considered as some main challenges of designers and manufacturers. Geometrical properties of battery plates such as thickness and maximum activated area are some of effective parameters on battery performance. Thus, determining of optimum values for independent variables is an important problem for battery industry. In the present study, a numerical solution code is developed using computational fluid dynamic method to simulate battery behavior. Numbers of 50 runs are suggested using response surface method. For each response one empirical model is extracted as a function of independent variables and from these models the optimization process is done. The results shows that in positive electrode thickness of 0.078 cm, negative electrode thickness of 0.53 cm, separator thickness of 0.04 cm and maximum activated areas for positive and negative electrode of 80 cm-1 is an optimum condition to get maximum capacity, minimum charging time and temperature. A confirmation test is done and it demonstrates that the results are in good agreement to predicted optimum results. In conclusion, the present study shows that by changing geometrical properties of the battery one can improve its performance.
Jafar Gerdabi, Amir H. Nikseresht,
Volume 18, Issue 4 (8-2018)
Abstract
The impact problems associated with water entry have important applications in various aspects of naval architecture and ocean engineering. Also the calculation of impact force is favorable to many researchers. The purpose of this study is to simulate the impact problem of a wedge into the Newtonian and also Herschel Bulkley dilatant non-Newtonian fluids using the Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) method. Some non-Newtonian fluids, such as dilatant or Herschel Bulkley dilatant fluids can resist against the wedge entry due to their shear thickening effect. In this research a prediction and correction algorithm is used to solve the governing equations. Density correction and also artificial viscosity (which is used only in Newtonian fluids) are used to prevent the numerical instability. To show the validation, ability and robustness of the generated code to capture the free surface in Newtonian and non-Newtonian fluids, the dam break problem with the image boundary condition is simulated. After validating the code and the used method, the impact problem of a wedge with Monaghan repulsive force boundary condition in Newtonian and Herschel Bulkley Dilatant non-Newtonian fluids are investigated and the results of force, pressure coefficient and velocity of the wedge are presented and compared with experiments and also with each other. To save time, the initial values of hydrostatic pressure are imposed as an initial condition of the fluid.
Alireza Bagheri, Mohammad Reza Toroghinejad, Aboozar Taherizadeh,
Volume 18, Issue 4 (8-2018)
Abstract
In this research, three-layered composite of brass-IF steel-brass was fabricated by cold roll bonding process (CRB) and formability of composite were investigated. Due to high work hardening of composite during rolling process, specimens were heat treated at annealing temperatures at 500°Ϲ through 700 °Ϲ for 10 min. Formability properties of composite were investigated by using tensile, anisotropy and Erichsen tests. The results showed that, heat treatment after rolling resulted in occurrence of recrystallization phenomenon in composite, consequently a reduction tensile strength and rising strain hardening rate. Dome height created by Erichsen test prior to heat treatment was 10/53 mm, by annealing composite at 500℃, Dome height reached at 14.62 mm. By increasing annealing temperature to 600℃ and owing to relatively high stacking fault energies of IF steel, recrystallization solitary occurred in brass layer. Nevertheless, as a result of upward trend of annealing temperature up to 650℃ as well as resultant driving force, recrystallization occurred in all layers and gradient of formability properties increased. As at 700℃, recrystallization phenomenon was completed in the composite and dome height was peaked at 17/29 mm. Moreover, by increasing annealing temperature, normal anisotropy and planer anisotropy respectively increased and decreased. Anisotropy properties of composite in comparison with brass and IF steel during complete recrystallization, it was clear that production of brass-IF steel-brass composite caused to improve normal anisotropy in brass and reduce negative effects of planer anisotropy in IF steel.
Omid Najafzade Asl, Mohammad Hossein Pol, Nabiollah Rezaei Golshan,
Volume 18, Issue 4 (8-2018)
Abstract
Composite tubes may be subjected to impact loads during placement or operation. By determining the impact properties of composite tubes and using them in the design process, the accuracy of the behavior of these structures in the loading condition is guaranteed. In this study, the behavior of glass/epoxy composite tubes under dynamic axial loading was experimentally investigated. Also, the effects of parameters such as fiber density, fiber alignment angle, internal diameter of the tube and impact energy on the amount of pipe damage were also studied. To prepare composite specimens, E-type glass fiber was used with two different densities of 200 gr⁄m^2 and 400 gr⁄m^2 . The specimens were placed on a drop weight machine of Tafresh University by a fixture, and the Impactor was released from the height of 2 meters. The force -displacement diagrams for each test were extracted and compared with each other. Also, a parameter called specific energy absorption was calculated for all samples in order to compare the efficiency of the samples as energy absorber. The results of this study showed that increasing the fiber density, number of layers and diameter of the tube increases the specific energy absorption. It was also observed that with the increase of the axial dynamic impact energy, the mechanical properties of the specimen will be changed and the specimen will be firmly established.
Nargess Meghdadi, Hanieh Niroomand-Oscuii, Madjid Soltani,
Volume 18, Issue 4 (8-2018)
Abstract
Cancer is one of the main causes of mortality and morbidity worldwide. Using a single treatment plan for all of the patients is not efficient due to the biological heterogeneity in the individuals. In order to personalize the therapy plan, tumors behavior in each patient must be understood. For this purpose clinical information of the patients are used. Mathematical modeling has gained significant interest in tumor growth investigations, due to its higher flexibility than the other methods. Mass effect and the reaction terms are the key parameters that are investigated in this paper. This is the first time that the effects of these parameters are considered in brain tumor growth modeling and there are few researches that have used only MR images in this area. The mathematical models are used for predicting the growth of brain tumors based on personal MRIs and introducing intracellular fraction into the model. Results of the comparisons show that considering the mass effect in the growth model would improve the prediction. Furthermore, it is necessary to define the optimum formulation for reaction term according to patients' medical information, to be used in the personalized model of tumor growth prediction. The represented approach can be used as a basis for personalizing the therapy plan in patients with brain tumors.
Mohamadreza Ansari, Mahdi Esmailpour,
Volume 18, Issue 4 (8-2018)
Abstract
In the current study, two-phase flow of water and air over a stepped spillway is probed in the form of a two-dimensional incompressible viscous flow. A novel numerical approach is used for the numerical simulation which is a combination of two models: volume of fluid (VOF) which uses an interface tracking algorithm for the simulation of the two-phase flow and two-fluid model which is based on time and space averaged equations and cannot track the interface explicitly. The most important issue in the introduced approach is to couple the two basic methods and select a proper criterion for status change between two basic methods. The latter criterion is based on an approximation from local distribution of the interface at each cell. In the hybrid method. In order to investigate the aeration effect in the stepped spillway, the air suction is generated by designing some holes at the upper edge of the steps and considering atmosphere pressure for these areas. The obtained results divulge the amount of dispersion is low at the beginning part of the step and also the hybrid model take more advantages from VOF, while in the lower steps where the flow disperses two-fluid model has hegemony. The results are compared in the form of pressure contours and streamlines as well as volume fraction counters. The comparison shows that the results of the proposed method is closer to the experimental results with respect to each of the basic model.
, Mohammad Mehdizadeh Youshanloei,
Volume 18, Issue 4 (8-2018)
Abstract
Nowadays, magnetic nanofluids have drawn a lot of attention toward themselves due to various applications in different fields such as medicine and industry. In this paper, for the first time new pumping method for magnetic nanofluids and ferro-fluids is presented. Moreover, magnetic nanofluid flow inside a rectangular channel under the effect of nonuniform magnetic field of permanent magnet is investigated. Iron oxide nanoparticles which lie completely homogeneous inside the based fluid of water are used. The governing equations obtained by adding the Kelvin body force term to the Navier-Stokes equations, and the equations are discretized using finite volume method and PISO algorithm. In order to study the effective parameters in the function of the FHD micro pump, a selected ranges of nanoparticles size, volume fraction of nanoparticles, saturated magnetization, and the length and width of the magnet are studied. The results demonstrate the increase in any of the mentioned parameters leads to rise in velocity magnitude inside the channel. Change in the diameter of magnetic nanoparticles has greatest effect on the velocity magnitude inside the channel. Furthermore, vertical magnet has better performance than horizontal one in FHD micro pump.
Ahmad Ghasemi Ghalebahman, Ali Khakbaz,
Volume 18, Issue 4 (8-2018)
Abstract
This study aims to investigate the transverse vibration of single- and double-layered graphene sheets embedded in an elastic medium based on the third-order shear deformation theory considering the axial force effect within the framework of Eringen’s nonlocal elasticity theory, where the governing equations of motion are obtained using Hamilton’s principle. The superiority of the studied non-local continuum model to its local counterpart is to consider the effect of size on the mechanical behavior of the structure. The results from a natural frequency analysis are obtained for different conditions such as the effect of size and aspect ratio, axial force, nonlocal coefficient, and change in the stiffness properties of the surrounding elastic medium by using the Navier-type solution for simply supported boundary conditions. Given that in a double-layered graphene sheet, the system has an in-phase vibrational mode and anti-phase vibrational mode with 180-degrees phase difference, the effect of van der Waals force on both vibrational modes is attempted to be investigated and it is shown that the van der Waals force has no effect on in-phase vibrational mode and by increasing it, the anti-phase frequency increases. It is also demonstrated that the nonlocal parameter is not a constant parameter but its value depends on the size and atomic structure, like chiral and zigzag configurations, and even on the type of boundary conditions.