M. Babaee Kolaee , A. Zolfaghari, H. Baseri,
Volume 20, Issue 8 (8-2020)
Abstract
Blow molding is one of the most widely used processes for producing hollow plastic parts. In this process, the wall thickness uniformity of blow molded part is a prime concern. Processing parameters such as blowing pressure, melting temperature, and parison thickness affect the uniformity. In this paper, extrusion blow molding process for Peugeot 405 and Peugeot Pars water tanks has been studied by simulations and experiments. The effects of parison thickness in three levels and blowing pressure in two levels were investigated on the wall thickness of blow molded part. Parison thickness was varied by manipulating air gap between mandrel and die. The results indicated that the increase of blowing pressure had no effect on the part thickness. However, the parison thickness significantly influenced the thickness of molded part. Parison thickness was optimized by considering the weight and required strength of the part, so that, the material consumed was decreased. Also, Polyflow software was used to simulate the blow molding process. For this purpose, the initial parison geometry was experimentally determined by a measurement set-up, then the inflation process was simulated on this real parison. A good agreement was obtained between thicknesses of part in the experiments and simulations.
Rezgar Hasanzadeh, Taher Azdast,
Volume 21, Issue 2 (1-2021)
Abstract
In this study, the mechanical properties of poly lactic acid samples produced by FDM 3D printing technique were investigated. The 3D printing process parameters were optimized using design of experiment (DOE) Taguchi approach for achieving the optimum mechanical performance. In this regard, infill percentage (at three levels of 30, 50, and 70%), raster angle (at three states of 0/90, -30/30, and -45/45 degree), and layer thickness (at three levels of 200, 250, and 300 µm) were considered as process parameters for optimization procedure. Their effects on density (as porosity degree), impact strength (as mechanical property), and specific impact strength (the impact strength to density ratio) were investigated. Analysis of variance (ANOVA) was utilized to find the most effective processing parameters. The findings revealed that the infill percentage was the most effective parameter on the density and the impact strength. The density and the impact strength were reduced with the decrease of the infill percentage. These decrements were in a way that their ratio, specific impact strength, was almost constant. The layer thickness had the most influence on the specific impact strength. The specific impact strength was improved by reducing the layer thickness due to the raster entanglement. The optimum conditions to achieve the highest mechanical performance were the raster angle of 30/-30 degree and the layer thickness of 200 µ. The optimum infill percentage depended on the application.
Asghar Rasouli, Taher Azdast, Hurieh Mohammadzadeh, Peyman Mihankhah, Rezgar Hasanzadeh,
Volume 22, Issue 1 (12-2021)
Abstract
The importance of environmental issues has increased the use of biodegradable polymers which nowadays have become among main components in medical and biological applications. In the present study, a new combined method of fused filament fabrication (FFF) and batch foaming was introduced to improve the properties of poly lactic acid. For this purpose, FFF samples were produced with infill percentages of 100, 80 and 60 and then, foamed in batch process. Due to the importance and effect of the void fraction on structural and mechanical performance as well as the biodegradability of materials with porous structure, especially for medical purposes, void fraction and impact strength were evaluated. The results showed that the void fractions of FFF samples were 3%, 13% and 25% in infill percentages of 100, 80 and 60, respectively while after the foaming they reached to 14%, 19% and 30%. The findings revealed that the impact strength of FFF foamed samples was improved compared to FFF solid samples. For samples with 100 infill percentage, the impact strength improved from 207 to 506 J/m2 due to the foaming procedure with nano-sized cells created by the batch foaming.
Mohammad Abbasi Khatoon Abadi, Roohollah Azizi Tafti,
Volume 23, Issue 2 (1-2023)
Abstract
During root canal treatment, whole or a part of the tooth crown may be lost. Post and core is a method of repairing a damaged crown, in which a pinjet dipped in acrylic resin is used to mold the tooth canal and make a cast post and core. The main goal of this research is to produce an inexpensive pinjet with required strength and proper adhesion to acrylic resin. Therefore, to determine a right material for pinjet, lap shear and tensile tests were performed on eight polymer materials to check the adhesion of pinjet to acrylic resin and its yield strength, respectively. To produce some pinjets, a plastic injection mold was built and Moldflow Insight software was used to determine the process parameters of the injection molding. The results showed that HIPS 7240 with the lowest price among the examined materials and sufficient adhesion to acrylic resin is a suitable material for the pinjet. Also, this material with a yield strength of 10.91 MPa had an appropriate strength to prevent plastic deformation during the post and core molding process. While the injection time, melt temperature, and mold temperature were considered to 1 s, 230 ˚C, and 25 ˚C, respectively in both simulation and experimental methods, the injection pressure was 19 and 18 MPa and the injection speed was obtained 0.3 and 0.27 cm/s respectively in the simulation and experiments. Producing a perfect pinjet shows the ability and accuracy of the simulation in proposing the process parameters of plastic injection molding.