Search published articles


Showing 3 results for Abdi Behnagh

Reza Abdi Behnagh, Hadi Abdollahi,
Volume 17, Issue 10 (1-2018)
Abstract

The poor formability of Mg results in crack and failure in workpiece material during rolling process and limits its applications in different industries. Numerical modeling of the process can guarantee that the required product properties are met with a minimum production cost. The numerical modeling of the rolling processes requires the coupling of several models including different physical phenomena such as the deformation of the workpiece with its thermo-metallurgical evolution and the thermal evolution of the rolls with its mechanical deformation. On the other hand, in finite element modeling of the rolling process, the meshes of the workpiece are often highly distorted. The high distortion in meshes decreases the confidence in the predicted results. Many formulations based on the viscoelasticity behavior of workpiece material are encountered in the literature to model the rolling process, each with their pros and cons. This present work introduces the Coupled Eulerian-Lagrangian (CEL) formulation, in which the workpiece is divided into three regions (unrolled, in rolling deformation, rolled) to simulate material flow during the process. The comparison of the results with the literature shows that the temperature and strain fields are well predicted by the proposed model. All of the simulations have been done in the two-dimensional mode with ABAQUS/Explicit software.
Sarang Kazeminia, Reza Abdi Behnagh, Milad Kalabkhani,
Volume 18, Issue 7 (11-2018)
Abstract

In this paper the conventional structure of dual-axis sun tracker is modified based on new mechanical and electrical detectors which are proposed to reduce both the angular error and power consumption. Automatic adjustment of the azimuth, latitude and altitude angle for the photovoltaic panels improves the performance of converting solar energy to the electrical energy, throughout all the seasons. In other words, both the north-worth and east-west angular error is continuously minimized until that the panel’s surface is solarized with the maximum energy. Post-Fabrication results show that the proposed control circuit and two actuators consume the average power of less than 10mWatt alongside the 13-hour of a summer day. The external power source is no longer required because the received power is saved in a battery in order to provide the power of the control circuit. The ratio of the required energy to the saved energy is optimized to around 0.13%. Measurement results confirm that the total Watt-hour during a summer day is improved around 60 percent in comparison to the case that a fixed panel is used. Design of the mechanical objects are performed using CATIA software such that endure up to 1200Watt panel array.
R. Abdi Behnagh, H. Abdollahi, R. Rajabi,
Volume 20, Issue 9 (September 2020)
Abstract

In the current study, shear compaction processing was used for the recycling of aluminum machining chips and direct converting of them to bulk parts. In this processing, machining chips are first loaded in a cylindrical chamber, then a rotating tool with a defined rotational speed and aligned axis with the chamber is placed on the chips, in the following, the temperature inside the chamber increases due to the friction. Then, the process continues until all chips are transformed into a bulk part. After producing the samples, properties such as density, porosity, microstructure, hardness, and wear of the recycled parts were examined. The results showed that there is a possibility of transforming aluminum chips into a completely bulk part without porosity, with a density of about 2.67g/cm3 and hardness of more than half of the base metal via shear compaction process. The amount of heat during the process leads to the consolidation of the chips and nucleation of new grains with dynamic recrystallization. Finally, a review of the total results and properties of the recycled samples showed that they could be used as a industrial part directly or after a secondary process.


Page 1 from 1