Search published articles


Showing 3 results for Agheli Hajiabadi

Hamid Rastgar, Mohammad Mehdi Agheli Hajiabadi,
Volume 16, Issue 9 (11-2016)
Abstract

Hexapod walking robots can be employed for both walking and manipulation purposes. When manipulating, they have 6 degrees of freedom for top platform, high rigidity, high load capacity, high speed, and accuracy. On the other hand, it is very well known that they have limited workspace when they are fixed in place for manipulation. Designing a hexapod robot resulting in a maximized workspace can greatly affect the efficiency of the robot when manipulating. Since radially symmetric hexapod walking robots can be modeled as three 2-RPR planar parallel mechanisms, we have used the methods and calculations that used in this kind of mechanism for designing a radially symmetric hexapod walking robot. In this paper, after a thorough review on existing methods for calculating and improving 2-RPR planar parallel mechanism workspace, an algorithm is presented, which results in a maximized reachable workspace. The merit of the method is that there is no need to calculate the workspace volume when maximizing the workspace volume. Also, following this algorithm is necessary for design of the maximized-workspace robot. In other words, the output of the presented optimization algorithm is a set of robot kinematic parameters, which guarantees the maximized volume of the robot’s reachable workspace.
G. Nikaeen, H. Mirzanejad, M. Agheli Hajiabadi,
Volume 20, Issue 4 (April 2020)
Abstract

Motor units’ malfunction, which happens due to stroke, often affects patients’ hand motion and subsequently restricts their daily activities and social participation. All these factors reduce the patient’s life quality. Therefore, finding a solution to overcome these limitations and improving hand function seems to be valuable. So far, many efforts have been done to design and develop different types of rehabilitation systems. Among all these systems, soft systems have attracted great attention due to their light weight, flexibility, safe interaction and affordability. The goal of this study is to fabricate a soft rehabilitation glove for hand function retrieval so that patients can perform rehabilitation exercises individually. The rehabilitation system presented here includes two different control modes including on/off and proportional modes. Each of them is selected based on patients’ needs. For verification purposes, trajectories of the finger tips were obtained in two modes: “using the glove” and “without using the glove”. Results showed that trajectories of the finger tips in the "using the glove" mode follow a proper path for the user’s digits.
 


M. Maleki Roudposhti , M. Agheli Hajiabadi,
Volume 20, Issue 7 (July 2020)
Abstract

Wheeled robots have various applications in industrial, laboratory, art, and filming environments. The choice of wheel and platform type in these robots depends on the motion and the degrees of freedom expected from the robot. With an appropriate choice of the wheel and platform, the degrees of freedom of 3 (known as holonomic robots) can be achieved in which the robot can move in both x and y directions and also rotate about the z axis in the general coordinate system. If the wheeled robot is designed to carry objects, it is necessary to consider a platform on top of the robot for this purpose. In this paper, a 3-DOF Stewart platform is used such that it provides rotation about x and y axes as well as motion in direction of z axis. The goal of this research is to develop a wheeled robot equipped with the 3-DOF Stewart platform to carry objects with ability of orientation control within the path. With integrating these two robots, the resultant robot will have 6 degrees of freedom, three of which are provided by the Stewart platform (α, β, Δz) and the other three are provided by the wheeled platform (Δx, Δy, γ). Therefore, the robot, with 6 degrees of freedom, can be controlled via the six parameters of Δx, Δy, Δz, α, β, γ.


Page 1 from 1