Showing 3 results for Akbarpour
Volume 14, Issue 2 (5-2023)
Abstract
Over the past few years, due to the shortage of forest resources as well as the increasing consumption of paper and paperboard, many pulp and paper manufacturers have developed the use of different sources of recycled (secondary) fibers. Therefore, recycling of paper is an effective and eco-friendly way to preserve forest resources, which eventually save the natural diversity and energy. The use of biotechnology in various sectors of the cellulosic products industries such as bio-pulping, bio-bleaching, bio-deinking, bio-wastewater treatment, etc. has been considered and good achievements have been obtained in this field. One of the most important applications of biotechnology in the cellulosic industries is the use of enzymes in the processing of recycled fibers. The use of enzymatic technologies, as environmental friendly process, has led to changes in industrial processes as much as possible and indicated great potential in solving many problems of recycled fibers, especially problems related to waste paper deinking, pulp drainage rate, fiber hornification, refining and stickies materials. In general, deinking with enzymes under acidic or neutral conditions declines the chemicals usage and reduces the yellowing of recycled paper under conventional alkaline deinking conditions. Today, the use of cellulosic enzymes (cellulase and hemicellulase) and oxidative enzymes (such as laccase) as well as amylase and pectinase have shown acceptable results for deinking different types of waste paper and most experiments in semi-industrial as well as industrial units have shown that deinking with them can reduce the cost of chemicals, increase the separation of ink particles
Volume 16, Issue 4 (7-2014)
Abstract
Understanding the implication of genotype-by-environment interaction (GEI) and improving stability of crop yield in a target production environment is important in plant breeding. In this research, we used the AMMI (Additive Main Effects and Multiplicative Interaction) model to identify the stable genotype(s) by predictive accuracy of yield data. Results of this study indicated that the FGH tests were useful to identify the best truncated AMMI model. In general, FGH1 and FGH2 tests had similar results. The findings of this study confirmed that the AMMI-4 was the best truncated AMMI model to distinguish the general and specific stability of genotypes across environments for recommending them to farmers. Based on AMMI-4 yield prediction, G15 and G17 were identified as useful genotypes for some environments, while G14 was found as a stable genotype in all environments.
Ali Mohtashami, Abolfazel Akbarpour, Mahdi Mollazadeh,
Volume 17, Issue 2 (3-2017)
Abstract
The complex behavior of the aquifer system is studied by solving a set of governing equations using either analytical or numerical methods. Numerical techniques like finite difference method (FDM) is being used to solve differential equation in some simple cases. Recently Meshless methods are developed in engineering fields. They are used for solving differential equations in both simple and complex cases. As this methods needs no meshing or re-meshing on the domain the shortages of meshing disappeared. Less studies already performed in groundwater flow modeling with meshless method. In this study Meshless local Petrov-Galerkin with moving least squares approximation function and spline weight function is used to model groundwater flow in Birjand unconfined aquifer in steady condition. The computed surface of groundwater with meshless local Petrov-Galerkin method is compared with the results observation. The results are found satisfactory. The relative mean error and root mean square error of computed groundwater surface from Meshless Local Petrov-Galerkin are 0.0002 and 0.483 respectively.