Search published articles


Showing 8 results for Ashrafizadeh

Alireza Razavi, Ali Ashrafizadeh,
Volume 14, Issue 6 (9-2014)
Abstract

Tornado is a destructive phenomenon which causes severe damage every year. To improve resistance of structures which face tornado, the flow field and factors which affect damage patterns of tornado need to be investigated. In this paper, numerical simulations of stationary and translating tornadoes are carried out using Ward-type simulator results and large eddy turbulence model. Validation for stationary case has been done with experimental work of Baker. The effects of peak winds, duration of intense winds and acceleration of translating tornado on damage patterns have been investigated. Results show that destruction is more intense at the side of the tornado that translational velocity and tangential wind velocity are added up. Moreover, peak wind velocity and duration of intense winds are important factors that have important effects on the destruction pattern of tall structures. However, the value of the translational acceleration of tornado is important for the design of all structures regardless of their heights.
Ali Ashrafizadeh, Ali Joodaki,
Volume 14, Issue 9 (12-2014)
Abstract

Variation of the cross-sectional area of a channel affects the flow field and, therefore, convective heat transfer between the fluid and channel walls. In this paper, a geometrical model is proposed for a wavy channel carrying steady laminar flow of an incompressible fluid. The two-dimensional channel is modeled as a combination of a number of subsonic diffusers and nozzles. Effects of the geometrical characteristics such as length, boundary shape and symmetry of the channel, which describe the shape of these nozzles and diffusers, are investigated. Numerical studies at Re=200 show that the shape of the wall does not dramatically affect the convection heat transfer rate in the steady laminar regime. However, optimization studies can be carried out to change the shape of the channel and improve the average Nusselt number to some extent. It is shown that the average Nusselt number increases with the increase of the length of the diffuser part, but the asymmetry of the channel might increase or decrease the average Nusselt number. Finally, a genetic algorithm is introduced and used to optimize the geometrical parameters which describe the aforementioned nozzles and diffusers and, hence, the shape of the channel.
Ali Ashrafizadeh, Ali Akbar Hosseinjani,
Volume 14, Issue 16 (Forth Special Issue 2015)
Abstract

In this paper an improved immersed boundary method is used for simulating sinusoidal pitching oscillations of a symmetric airfoil. Immersed boundary methods because of using a fixed Cartsian grid are well suited for such moving boundary problems. Two test cases are used to validate the proposed method and the effects of oscillation frequency and amplitude on the flow field are investigated. Flow field vorticity and kinetic energy contours are reported in this paper. It is found that the deflected wake start to be appeared for Strouhal number more than 0.4 at a fixed pitching amplitude 0.71. A chaotic flow can be observed at oscillation amplitude 2.80, for a fixed Strouhal number, 0.22. Kintic energy contour shows that for Strouhal number 0.1, the airfoil performs work and transfers momentum to flow but the fluid energy loss due to the enlargement of flow separation zone decreases the momentum and kinetic energy behind the airfoil. Deficit momentum and kinetic energy behind the airfoil results in drag force increasing. By increasing the oscillation frequency and amplitude more momentum transfers to flow filed behind the airfoil which results in drag force decreasing.
Seyed Meysam Khatoonabadi, Mahmoud Ashrafizadeh,
Volume 15, Issue 12 (2-2016)
Abstract

Numerous models have been proposed to incorporate various equations of state (EOS) into the pseudo potential model. This paper presents an investigation of different EOS types based on the Gong and Cheng model in multiphase-single component flows by the lattice Boltzmann method. Primarily, it is conducted to investigate eight EOS’s classified in four categories; the Shan- Chen EOS, the cubic EOS, the non-cubic EOS, and the cubic and non-cubic combination EOS. The results show that each EOS type results in producing relatively similar spurious currents and has a maximum achievable density ratio. Although by choosing a proper beta parameter for every EOS the simulation errors decrease dramatically, our results show it is impossible to set a constant parameter for the non-cubic EOS. Therefore, a new equation is introduced to predict an efficient beta for the cubic and the Shan- Chen EOS’s. It is also found that the non-cubic, cubic, and non-cubic and cubic combination EOS’s have a wider temperature range and larger density ratios respectively. Hence, we determine a temperature dependent function for the beta parameter prediction instead of using a fixed value for the non-cubic EOS. The results are noticeably in better agreement with those of the Maxwell construction (theoretical results).
Mehdi Nikfar, Ali Ashrafizadeh,
Volume 16, Issue 1 (3-2016)
Abstract

One of the interesting and practical problems in thermo-fluid sciences is referred to finding the shape of a boundary on which a specific distribution of pressure, temperature or heat flux is known. Because solving such problems using experimental, semi-experimental and analytical methods is time-consuming or even impossible in some practical situations, myriad numerical methods have been introduced to solve surface shape design (SSD) problems. In all the numerical algorithms, an initial guess is modified through a numerical process until the desirable distribution of the target variable is achieved. All the numerical algorithms use three computational tools, i.e. grid generator, flow solver and shape updater to solve an SSD problem. In most of numerical algorithms, not only the three mentioned tools work separately but the shape updater is also not derived from the governing equations. In this article, to solve SSD problems containing convection heat transfer, a new shape design algorithm called direct design method is presented in which grid generator, flow solver and shape updater work simultaneously and also the shape updater is directly derived from the governing equations. Some SSD problems containing convection heat transfer in which instead of the boundary shape the distribution of the heat flux is known are solved using the proposed algorithm. The obtained results show the capability of the method in solving SSD problems containing internal convection heat transfer.
Mohsen Khodaee, Ali Ashrafizadeh, Mostafa Mafi,
Volume 16, Issue 13 (Conference Special Issue 2017)
Abstract


Mohsen Khodaee, Ali Ashrafizadeh, Mostafa Mafi,
Volume 17, Issue 2 (3-2017)
Abstract

Refrigerant is one of the most important parts in a refrigeration cycle. In many refrigeration cycles, especially in the natural gas processing industry, propane is used as refrigerant due to its desirable thermodynamic properties. There are two ways for transferring propane and butane gases from extraction point to the consumption site: a) Pipeline and b) liquefaction and transport in liquid form. The most profitable method for transporting large quantities of propane and butane gases is liquefaction and transport in liquid form using storage tanks. Liquefaction at atmospheric pressure is the most common method for transporting large quantities of gases using specifically designed refrigerated ships. In this paper, a gas refinery butane and propane liquefaction cycle is described first and then simulated in HYSYS software. Afterwards, Genetic Algorithm is used to minimize the total power consumption of the liquefaction cycle, through connecting HYSYS and MATLAB softwares. There are 13 variables and 13 constraints for compressors and heat exchangers in the formulation of the optimization problem. The results of this constrained optimization problem show that the power consumption can be reduced by 12.49% compared to the base case.
Hossein Kalantar-Neyestanaki, Mostafa Mafi, Ali Ashrafizadeh,
Volume 17, Issue 6 (8-2017)
Abstract

The existence of huge gas resource in Iran and the global demand for the replacement of fossil fuels with this cleaner energy resource has caused that the large-scale gas export becomes an interesting topic. One of the methods for large-scale gas exports is liquefaction which is done by refrigeration cycle. Considering the importance of the efficient use and the reduction in energy consumption, particularly in large energy consumers like liquefaction plants, it is imperative to optimize the refrigeration cycles used in these plants. While there have been many studies focusing on the power consumption minimization of refrigeration cycles, however, in most of these studies the performance limitations of the refrigeration cycle components have not been considered. Therefore, the results of such studies are not practical for in-use refrigeration cycles in gas refineries. The main goal of this paper is to propose a systematic method to minimize the power consumption of in-use refrigeration cycles in gas liquefaction processes by taking into account the performance limitations of refrigeration cycle components and the interactions between the refrigeration cycle and the core process. In this regard, a combination of thermodynamic viewpoints and pinch technology is used as well as considering the above mentioned limitations, to express the multi-stage refrigeration cycles’ power consumption minimization problem as a function of several independent variables. Up to 15% reduction in the specific power consumption is achieved when the proposed method are implemented on the optimization of a typical in-use three-stage refrigeration cycle, used in a propane liquefaction plant.

Page 1 from 1