Showing 6 results for Azdast
Mahmoud Moradi, Omid Mehrabi, Taher Azdast, Khaled Y. Benyounis,
Volume 17, Issue 2 (3-2017)
Abstract
In the present study, the effect of gas pressure and laser beam focal plane position (FPP) on the geometry and roughness of kerf quality of the injected polycarbonate with the thickness of 3.2 mm in laser cutting by using low power continuous CO2 laser is investigated. Gas pressure and FPP were variable parameters in this research, while other processing parameters (i.e. laser power and cutting speed) are considered constant. Gas pressure experiments were carried out by varying the gas pressure from 0.5 to 3.5 bars and the FPP experiments were performed in FPP= 0 to FPP= -4mm. Kerf geometry quality (upper and lower kerf width, kerf taper, upper heat affected zone) and surface roughness of the kerf wall were also considered as the responses. Results show that gas pressure and FPP has a significant effect on the kerf quality. Increasing the gas pressure and the position of the laser beam focal point increases the upper and lower kerf width. Results also reveal that upper heat affected zone value decreases by reduction in FPP and increases the gas pressure. Increasing the gas pressure will reduce the kerf taper angle and reduction in the FPP reduces the surface roughness of the kerf wall. Observations indicated that by locating the laser spot point in the depth of the workpiece the laser cutting quality increases.
T. Azdast , R. Hasanzadeh,
Volume 19, Issue 1 (January 2019)
Abstract
Nowadays, polymeric foams have attracted special attention in scientific and industrial societies due to their unique properties such as high strength to weight ratio, excellent thermal-insulation, sound-insulation, and good mechanical properties. One of the main goals of the studies of polymeric foams is to increase the cell density and aligning with it, is to reduce the cell size of these materials. Researchers have shown that the extraordinary properties of polymeric foams such as superior thermal-insulation can be achieved by increasing the cell density/ decreasing the cell size. In this regard, firstly the most important processes for the production of polymeric foams (batch, extrusion, and injection molding processes) were studied in the present research. Then, cell nucleation stage as the most important process for achieving high cell density/ low cell size is studied in details. In the following, the most important researches in the field of polymeric foams were introduced in which, the highest cell densities/ lowest cell sizes were achieved. The investigations show that the most significant results (highest cell densities/ lowest cell sizes) are belonging to the batch process. Also, the use of nucleating agents, increasing the solubility of blowing agent into the polymer, and the use of nanoparticles are the most efficient solutions in order to achieve microcellular and nanocellular structures.
R. Hasanzadeh, T. Azdast, A. Doniavi, M.m. Darvishi,
Volume 19, Issue 9 (September 2019)
Abstract
Heat transfer of polymeric foams is consisting of three different mechanisms including heat transfer through a solid phase, gas phase, and thermal radiation. Thermal insulation properties of polymeric foams are affected by different structural properties. Also, these structural properties have a different influence on the different heat transfer’s mechanisms. Therefore, it is necessary to use theoretical models. Several theoretical models have been presented so far, meanwhile, providing theoretical models that can estimate the thermal conductivity using the easiest measurable properties along with sufficient accuracy and reliability can be very helpful. In this regard in the present study, a theoretical model based on cell size and foam density is developed in order to predict the thermal properties of polymeric foams. It was concluded that the error of the developed theoretical model is lower than 8% in comparison to the experimental results. In the following, the effect of most important structural parameters i.e. foam density and cell size on the thermal conductivity is investigated. Based on the results, determining the optimum density is necessary to achieve the lowest thermal conductivity. Also, the gas thermal conduction has the most contribution to the overall thermal conductivity and achieving the nanometer cell sizes can be useful in order to decrease it.
R. Hasanzadeh, T. Azdast, A. Doniavi, R. Eungkee Lee,
Volume 19, Issue 9 (September 2019)
Abstract
Polymeric foams are one of the best candidates for thermal insulation. Accordingly, to investigate the thermal insulation properties of polymeric foams has attracted the attention of scientific communities in recent years. In this study, optimization of thermal insulation properties of polymeric foams is performed from solid and radiation thermal conductivities points of view. In this regard, a theoretical model based on cell size and foam density is developed. The results of the developed theoretical model are verified in comparison to various experimental results. Based on the results, the error of the theoretical model is lesser than 5%. Decreasing the foam density increases and decreases the solid and radiation thermal conductivity, respectively. Also, the radiation thermal conductivity is decreased by reducing the cell size. Response surface method (RSM) is applied in order to optimize the solid and radiation thermal conductivities. The results illuminate that the foam density of 23.5 kg.m-3 and cell size of 53 μm are the optimum conditions. At the optimum conditions, both of the solid and radiation thermal conductivities are lesser than 3 mW/mK. According to the results, the data obtained from developed theoretical model and RSM are in a good agreement. The total thermal conductivity is 30 mW/mK at optimum conditions which is a desirable value at aforementioned cell size range.
Rezgar Hasanzadeh, Taher Azdast,
Volume 21, Issue 2 (February 2021)
Abstract
In this study, the mechanical properties of poly lactic acid samples produced by FDM 3D printing technique were investigated. The 3D printing process parameters were optimized using design of experiment (DOE) Taguchi approach for achieving the optimum mechanical performance. In this regard, infill percentage (at three levels of 30, 50, and 70%), raster angle (at three states of 0/90, -30/30, and -45/45 degree), and layer thickness (at three levels of 200, 250, and 300 µm) were considered as process parameters for optimization procedure. Their effects on density (as porosity degree), impact strength (as mechanical property), and specific impact strength (the impact strength to density ratio) were investigated. Analysis of variance (ANOVA) was utilized to find the most effective processing parameters. The findings revealed that the infill percentage was the most effective parameter on the density and the impact strength. The density and the impact strength were reduced with the decrease of the infill percentage. These decrements were in a way that their ratio, specific impact strength, was almost constant. The layer thickness had the most influence on the specific impact strength. The specific impact strength was improved by reducing the layer thickness due to the raster entanglement. The optimum conditions to achieve the highest mechanical performance were the raster angle of 30/-30 degree and the layer thickness of 200 µ. The optimum infill percentage depended on the application.
Asghar Rasouli, Taher Azdast, Hurieh Mohammadzadeh, Peyman Mihankhah, Rezgar Hasanzadeh,
Volume 22, Issue 1 (January 2021)
Abstract
The importance of environmental issues has increased the use of biodegradable polymers which nowadays have become among main components in medical and biological applications. In the present study, a new combined method of fused filament fabrication (FFF) and batch foaming was introduced to improve the properties of poly lactic acid. For this purpose, FFF samples were produced with infill percentages of 100, 80 and 60 and then, foamed in batch process. Due to the importance and effect of the void fraction on structural and mechanical performance as well as the biodegradability of materials with porous structure, especially for medical purposes, void fraction and impact strength were evaluated. The results showed that the void fractions of FFF samples were 3%, 13% and 25% in infill percentages of 100, 80 and 60, respectively while after the foaming they reached to 14%, 19% and 30%. The findings revealed that the impact strength of FFF foamed samples was improved compared to FFF solid samples. For samples with 100 infill percentage, the impact strength improved from 207 to 506 J/m2 due to the foaming procedure with nano-sized cells created by the batch foaming.