Search published articles
Showing 2 results for Elmkhah
A. Abdolahzadeh, Hassan Elmkhah, Farzad Mahboubi, Ali-Reza Sabor Rohaghdam, Kwang Ho Kim,
Volume 14, Issue 12 (3-2015)
Abstract
The purpose of this paper is a qualitative evaluation of the mechanical properties of titanium aluminum nitride (TiAlN) hard nanostructured coatings applied on cutting tools using X-ray diffraction (XRD). Deposition of TiAlN and TiN nanostructured coatings were carried out by a pulse DC plasma-assisted vapor deposition (DC-PACVD) and a high power impulse magnetron sputtering (HIPIMS) machines. At first, for enhancement the adhesion of TiAlN nanostructured coating on the steel substrate, TiN inter-layer was deposited for the all samples. Nano-indentation, micro-hardness tester, and field emission scanning electron microscope (FE-SEM) were used in order to measured and compare the qualitative results with the real and experimental values. The results indicate that XRD pattern and their analysis can be a suitable qualitative method to evaluate the mechanical properties of the coatings. The lattice parameter, micro-strain, residual stress, texture coefficient, the crystal grain size and density of dislocation are used to demonstrate the relationship between the mechanical properties of the coatings and the XRD patterns. As a result, this method can be used as non-destructive and inexpensive method for quantitative comparison and evaluation of mechanical properties of thin film materials.
H. Naderi, H. Elmkhah, Y. Mazaheri,
Volume 19, Issue 12 (December 2019)
Abstract
In this research, nanostructured TiAlN coatings were applied on HSS substrate using cathodic arc evaporation method (CAE) in the different duty cycle values. Then the effect of duty cycle on the coating surface properties including surface morphology and structure, coating thickness and mechanical behavior of nanostructured coatings were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the surface coatings. Also, micro indentation and adhesion test were utilized to evaluate the mechanical behavior. The results show that by changing the duty cycle, the macro-particles size and amount change which is effective on the roughness and morphology of the coatings. It is attributed to the electrical charge of macro-particles that are produced in the process which can be influenced by the structure. Also, the changes in grain size depend on the changes of duty cycle value. Furthermore, the mechanical properties of the coatings are affected by altering the duty cycle related to the deposition mechanism. The hardness value of TiAlN coatings increases from 3168 HV to 3817 HV when the duty cycle increases from 25% to 50%. But whit an increase in duty cycle from 50% to 75%, hardness reduced to 3582 HV. Consequently, it can be possible to find an optimum duty cycle value to achieve the best mechanical properties. Also, the minimum friction coefficient (0.44) and the minimum wear rate were determined for the TiAlN coating with the duty cycle of 75%, which it can be attributed to better smoothness and higher density of the coating.