Search published articles
Showing 2 results for Etemadi Haghighi
Arian Ehterami, Payam Saraeian, Shahram Etemadi Haghighi, Mahmoud Azami,
Volume 17, Issue 12 (2-2018)
Abstract
The main purpose of using scaffolds replacement tissues of the body. The most important part is to choose the type and steel scaffolding so that eventually will replace the damaged tissue. One of the mechanisms proposed to reshape the bone is based on its piezoelectric properties. It seems that the use of piezoelectric materials is an option for use in the body, is a unique privilege. Therefore, the ceramic barium titanate (BaTiO3) having good piezoelectric properties, Curie temperature of about 125˚C and laboratory observations that non-toxic in the body, as a candidate to replace and simulate the performance of bone tissue, has been proposed. In this study, the design and produce of barium titanate piezoelectric ceramic as a bone scaffold with foam casting method and become coated with gelatinous and nanostructured HA composite for bone tissue engineering. Then test its properties by infrared spectroscopy, X-ray diffraction, scanning electron microscopy and mechanical properties were studied. In the end, it was concluded that the barium titanate scaffold produse with foam casting method coated with gelatin nano hydroxyapatite composite structure suitable for use in bone tissue engineering.
Amir Hosein Akbari, Payam Saraeian, Shahram Etemadi Haghighi, Ehsan Shakouri,
Volume 22, Issue 5 (May 2022)
Abstract
Due to the difficulties and limitations in grinding hard materials, the use of nanoparticles in the Minimum Quantity Lubrication method can be effective as an appropriate solution to improve the efficiency of lubricating fluids. In this study, the effect of using a combination of carbon nanotubes and copper nano oxide on the surface quality of Inconel 718 alloy during grinding by Minimum Quantity Lubrication has been investigated.
The results showed that the use of nanoparticles in Rapeseed oil reduced the roughness and improved the surface health of the samples. The best surface topography with the least amount of pits and Furrows was obtained by combining nanoparticles with 3wt% in rapeseed oil, so that the surface roughness of the samples was reported 0.243 μm during this method, which is compared to the net use of CNT and CuO decreased by 14% and 7% respectively. Also, during the use of nanoparticles in minimum quantity lubrication, the amount of surface roughness compared to dry, flood and minimum quantity lubrication with rapeseed oil, decreased by about 35%, 13% and 18%, respectively.