Search published articles


Showing 1 results for Fathi-Asgarabad

E. Fathi-Asgarabad, S.h. Hashemi,
Volume 20, Issue 5 (May 2020)
Abstract

One of the most important purposes of the drop weight tear test (DWTT) is to achieve the value of fracture energy for better evaluation of tested steel properties. In the present research, experimental and numerical measurement of fracture energy in drop weight tear test specimen with chevron notch on API X65 steel has been carried out. The purpose of the determination of this energy is to estimate the strength of material due to fracture. The test specimen was cut from an actual spiral seam welded steel pipe of API X65 grade with an outside diameter of 1219mm and wall thickness of 14.3mm and then it has been machined to standard size. Then chevron notch with a length of 5.1 was placed in the middle of the specimen and the specimen was fractured under dynamic loading with an initial impact velocity of 6.3m/s. The maximum force of 229kN and 225kN were achieved for experimental and numerical data, respectively by drawing force-displacement and energy-displacement curves. The fracture energy of the test sample for experimental and numerical data was obtained as 7085J and 6800J, respectively by evaluation of the area under the force-displacement curve. Based on the results of experimental curves, about %59 of fracture energy was used for crack propagation and the remaining was used for crack initiation and plastic deformation of test sample near anvils and striker regions. In the end, drawing a linear curve for fracture energy of specimen based on the hammer velocity showed that the slope of this curve could be a good criterion for estimating the energy loss and fracture behavior of the test specimen.
 



Page 1 from 1