Search published articles


Showing 1 results for Forouzesh

Farinaz Forouzesh, Ali Asghar Jafari,
Volume 15, Issue 7 (9-2015)
Abstract

The objective of this paper is to analyze the nonlinear vibrations of simply supported pseudoelastic shape memory alloy (SMA) cylindrical shell under harmonic internal pressure based on Donnell-type classical deformation shell theory. The pressure is a function of time and space. The behavior of pseudoelastic SMA is simulated via the Boyd–Lagoudas constitutive model numerically implemented by the Convex Cutting Plane Mapping algorithm. The Hamilton’s principle is employed to obtain the equations of motion. Differential Quadrature Method (DQM) and Newmark time integration scheme are applied to get the time and frequency responses of the cylinder. Also, the natural frequencies of the shell are obtained for the case of pure austenitic phase to compare the frequency response of the present nonlinear system (phase transformation –induced material nonlinearity) with the linear one around them. Results indicate that the strength of the material will decrease during the phase transformation. This fact is proved by the softening behavior observed in the frequency response of the system due to the phase transformation. Further, the pure austenitic phase shell is simulated in ABAQUS to verify the results. A good agreement is found between two outcomes.

Page 1 from 1