Search published articles


Showing 3 results for Ghaebi

Hadi Ghaebi, Behzad Farhang,
Volume 16, Issue 6 (8-2016)
Abstract

In the current work different organic rankine cycles (base and modified) coupled with proton exchange membrane presented to produce hydrogen and power. Organic rankine cycles used in this work are basic Organic Rankine Cycles (ORC), ORC incorporating regenerator, ORC incorporating feed fluid heater and ORC incorporating both of the regenerator and feed fluid heater. ORC energy demand supplied by geothermal energy. A thermodynamic model (energy and exergy) of systems done. EES software used to model the systems. Also a parametric study done to investigate the effects of the performance parameters (energetic and exergetic) of considered systems. The results showed that ORC incorporating both regenerator and feed fluid heater with PEM electrolyzer had the maximum energy (3.514%) and exergy (68.93%) efficiency in comparison with other systems. Also it can be observed that evaporator and electrolyzer had the most portion of exergy destruction of the system. Energy efficiency, exergy efficiency, hydrogen production and net power increased by pressure growth in all systems. The amount of exergy efficiency, energy efficiency, hydrogen production and net power increased by the evaporator temperature addition in ORC incorporating regenerator with PEM electrolyzer and ORC incorporating both regenerator and feed fluid heater with PEM electrolyzer but their amount marginally decreased by the evaporator temperature addition in basic ORC incorporating with PEM electrolyzer and ORC incorporating feed fluid heater with PEM electrolyzer.
Reza Kheiri, Hadi Ghaebi,
Volume 16, Issue 13 (Conference Special Issue 2017)
Abstract


S. Ghavami Gargari, H. Ghaebi, M. Rahimi,
Volume 19, Issue 3 (March 2019)
Abstract

In this paper, a novel multi-generation system based on gas turbine-modular helium reactor cycle is presented. Integrated system consists of a Gas turbine-modular helium reactor cycle as a base cycle and from the combination of subsystems, hydrogen production, absorption refrigeration cycle, and desalination system. Thermodynamic comprehensive modeling (energy and exergy) was done on the suggested system. The effect of various system parameters, such as turbine inlet temperature, compressor pressure ratio, carbon dioxide to methane molar ratio, vapor generator temperature, and mass flow rate of the desalination system have been evaluated on the overall performance of the system. Also, optimization of the overall system using single and multi-objective optimization method has been investigated in terms of energy and exergy compared to the base case. The results showed that the maximum net power output and the energy efficiency and exergy of the overall system in compressor pressure ratio between 2.3-2.45 were 275 MW, 72.05%, and 49.35%, respectively, and with increasing turbine inlet temperature, heat production rate and energy and exergy efficiencies of overall system increases and the cooling production rate and freshwater decreases. In addition, the optimal point of the mass flow ratio of the desalination system for the energy and exergy efficiencies of overall system is 2.857. According to the results obtained in the multi-objective optimization method, the energy and exergy efficiencies of overall system were 74.41% and 50.21%, respectively, and exergy destruction has been reduced to 0.74% compared to base case.


Page 1 from 1