Search published articles


Showing 2 results for Goushegir

Shirko Faroughi, Seyed Mohammad Hossein Goushegir,
Volume 16, Issue 1 (3-2016)
Abstract

In this paper, the longitudinal vibration of nanorod based on Eringen’s nonlocal elasticity theory was studied using Rayleigh-Ritz method. A non-uniform nano-rod with variable cross-sectional area, density and Young’s modulus were considered. In the present work, boundary polynomials with orthogonal polynomials were used as shape functions in the Rayleigh-Ritz method which causes the vibrational analysis to be computationally efficient and imposing of boundary conditions to be easier. Using the mentioned polynomials the convergence rate of the obtained results was increased. All of the equations used in this study were made to have no dimensional to reduce the number of effective parameters in the solution. The influence of the nonlocal and in-homogeneity parameters on the vibrational behavior of nanorod was investigated. The results were compared to available results in the literature and a good agreement has been achieved. The results showed that nanorod frequencies were depended to the small scale effect, non-uniformity, and boundary conditions. For instance, an increase in frequency ratio causes the scale coefficient in all vibration modes to be increased, especially in higher modes. In addition, the frequencies were increased by increasing in the length of the nanorod.
Seyed Mohammad Hossein Goushegir, Shirko Faroughi,
Volume 17, Issue 5 (7-2017)
Abstract

In this work, axial vibration of nanorod was analyzed based on two phase integro-differential nonlocal elasticity theory using isogeometric method. Two phase integro-differential nonlocal elasticity theory not only shows the nonlocal property in an integrated manner based on kernel weight function, but also combines local and nonlocal linear curvature for a two phase nonlocal elastic material. The new isogeometric approach combines finite element method with computational geometry and can present an accurate geometric model for the problem. Also, using b-spline basis functions with arbitrary continuity order, it can be a better alternative for classical finite element methods. The obtained results indicated that isogeometric approach was superior to finite element method in term of speed and convergence quality. Moreover, in this model, the effects of phase and nonlocal parameters on the natural frequencies of the nanorod were investigated and it was shown that increase of parameters of local phase and nonlocal length scale, respectively, increased and decreased the values of natural frequencies of nanorods. Finally, for two special cases, asymptotic frequencies for a single type of nonlocal rod, two phase integro-differential was obtained and the results were compared with corresponding available differential Eringen results.

Page 1 from 1