Search published articles
Showing 1 results for Hendooie
L. Hendooie , R. Shafaghat, A. Ramiar, M. Dardel, Q. Esmaili,
Volume 19, Issue 7 (July 2019)
Abstract
One of the most important factors in decreasing the lifetime and inappropriate performance of PEM electrolyzers is the non-uniform current distribution on membrane surface. Since the smoothest distribution of species and water leads to optimal current distribution, in this research, a 1D- 1D model has been developed that explores the distribution of species and water, and finally the current distribution in layers and determines the optimal performance conditions of the high PEM membrane electrolyzers. In this model, the pressure is assumed constant throughout the channel, the cell temperature is constant, and the membrane is fully hydrated. The length of the anode and cathode channels is divided into 20 equal parts. By simultaneously solving the equations along the channel and perpendicular to it in each section, the distribution of species and current are obtained. The result showed that by increasing the average flow density, the flow distribution is smoother along the channel and, with increasing water flow, the current distribution is smoothed, but it has little effect on the polarization curve. Fick's effect on the distribution of species at the interface between the membrane and the gas diffusion layer has been investigated. Finally, the effect of thickness on the polarization curve is determined. By increasing the thickness of the membrane and the electrodes, the function of the system decreases.