Search published articles


Showing 3 results for Jamei


Volume 8, Issue 1 (4-2017)
Abstract

In recent years a lot of researches have been carried out about sensitivity of the living organisms to magnetic fields and nanoparticles. Therefore, to evaluate the effect of the magnetic field and silver nanoparticles on photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids), proline, glycine betaine, soluble sugars and proteins, nitrate and nitrate reductase activity and protein electrophoresis pattern on Calendula officinalis L., in 2015 experiments were performed in the Department of Biology, University of Urmia. Seedlings were grown for 30 days in four treatments including: control, magnetic field with B = 3 mT for an hour per day, silver nanoparticles (50 ppm), and magnetic field (B = 3mT) plus silver nanoparticles (50 ppm). The results showed that plants treated with magnetic field, silver nanoparticles and magnetic field + silver nanoparticles photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids) content, compatible solutions content such as proteins and soluble sugar, proline andglycine betaine and nitrate content and nitrate reductase activity were significantly (P<0.05) increased compared to control group. Electrophoretic pattern of proteins investigated the maximum bands visible on gel electrophoresis were for treated groups with silver nanoparticles + magnetic field.
Mehdi Jamei, Hamid Reza Ghafouri,
Volume 15, Issue 12 (2-2016)
Abstract

In this article, a numerical solution of incompressible two-phase flow in isothermal condition, based on wetting pressure-wetting saturation formulation (Pw,Sw) using high order primal discontinuous Galerkin (DG) methods is considered which can capture the shock fronts of two-phase flow in heterogeneous porous media. In this presented model, the velocity field is reconstructed by a H(div) post-process in lowest order of Raviart-Thomas space (RT0). Also in this study, the scaled penalty and weighted average (harmonic average) formulation significantly improve the especial discretization formulation of governing equations which cause to reduce the instabilities in heterogamous media. The modified MLP slope limiter is used to remove the non-physical saturation values at end of each time step. In this study, the slope limiter should be considered as one of the main novelties due to the impressive effects in results stabilization. The proposed model is verified by pseudo 1D Buckley-Leverett and Mcwhorter problems. Two test cases, a problem for modeling the secondary recovery of petroleum reservoirs and other one a problem for detecting immiscible contamination are used to show the abilities of shock capturing two phases interface in porous media.

Volume 18, Issue 3 (10-2015)
Abstract

Objective: Worldwide, Leishmania major is one of the major causes of cutaneous leishmaniasis, including Iran. In the present study we investigate the effect of a direct electricity current in combination with silver nanoparticle on the killing of Leishmania major in vitro. Methods: We evaluated the effects of different concentrations of silver nanoparticles against Leishmania major promastigotes in vitro, then the half maximal inhibitory concentration (IC50) of the nanoparticles was determined. In the second step, the killing effect of silver nanoparticles alone or in combination with 3mA of direct electric current was assessed in promastigote cultures for 10 minutes. Next, we evaluated the survival rate of treated promastigotes with the MTT assay. Results: The parasite count showed that the various concentrations of silver nanoparticles significantly decreased the numbers of live promastigotes over time compared with the control group after 24, 48 and 72 hours of culture. The IC50 of the nanoparticles was 39.8 µg/ml after 48 hours of cultivation. Promastigote mortality occurred in 33.5% with the use of silver nanoparticles alone at concentrations of 160 µg/ml and 100% when combined with 3 mA direct current electricity after 10 minutes. Conclusion: Silver nanoparticles alone did not completely kill Leishmania major promastigotes. However, the combined use of both direct current electricity and silver nanoparticles had a significant synergistic effect on promastigote mortality.  

Page 1 from 1