Search published articles


Showing 6 results for Javaherdeh

Kaveh Hanifi Miangafsheh, Kourosh Javaherdeh, Mortaza Yari,
Volume 15, Issue 5 (7-2015)
Abstract

The performance of a cogeneration cycle with various working fluids is investigated and optimized with an economic approach. Exergy and exergoeconomic models are developed to investigate the thermodynamic performance of the cycle, and to assess the cost of products. In this study, the dynamic model would be registered to search the system behavior during a day. In this study, hydrogen production rate optimal design (HPROD) refrigeration power optimal design (RPOD) and cost optimal design (COD) are considered for analysis and optimization. According to recent parametric studies, boiler, turbine and condensation temperature and turbine inlet pressure affect the unit cost of products significantly. The results show the carbon dioxide and n-octane has a better operation to produce of hydrogen and refrigeration power among other working fluids, respectively. It is observed that, in carbon dioxide cycle, the SUCP is decreased by 8.5% when hydrogen production rate is decreased from 1.811 lit/s to 1.757 lit/s, therefore, in n-octane cycle, SUCP is decreased by 47.4% when refrigeration power is decreased from 9.599 KW to 6.622 KW. The evaluation of exergy destruction demonstrates in which the condenser has the highest exergy destruction, therefore, its rate in COD case is the lowest among the three other states. The results indicate, in carbon dioxide and n-octane cycles, the total exergy destruction and the investment cost rates in the RPOD case is higher than any other cases.
Kourosh Javaherdeh, Azam Alizadeh, Mohammad Zoghi,
Volume 16, Issue 7 (9-2016)
Abstract

In this study, at first the combined steam and organic Rankine cycles, have been stimulated with high-temperature wasted hot gases recovery, from the energy and exergoeconomic points of view. In the configuration of the combined cycles, the high-temperature wasted gases acts as the source of steam cycle evaporator, then the decreased temperature exhaust gas of the steam cycle evaporator, is used as the low temperature source of organic cycle evaporator. Afterward the effects of changing different parameters such as temperature of the evaporator and condenser of steam cycle and pinch temperature difference, on the amount of total output work, total irreversibility, energy efficiency, exergy efficiency and exergoeconomic variables have been checked. The results in base state show that, energy and exergy efficiency of combined cycles are 0.2782 and 0.5279 respectively and the amount of output work and total irreversibility are 71401kW and 43616kW respectively. Total exergoeconomic factor for the combined cycles is 12.47 percent, which represents a high exergy destruction in components and recommends raising the initial cost of components in order to improve the performance of system. The evaporator, turbine and condenser of steam cycle, are the components that should be considered from the perspective of the exergoeconomic, because they contains the maximum amount of total initial costs and the cost of exergy destruction.
Kourosh Javaherdeh, Hamed Habibi, Mohammad Zoghi,
Volume 16, Issue 12 (2-2017)
Abstract

In this research, ammonia-water regenerative Rankine cycle driven by solar energy and LNG as it’s heat sink in condenser, is simulated from the energy, exergy and exergoeconomic point of view. A relatively new method is used to implement pinch temperature difference in heat exchangers which causes improving of the thermodynamic performance and output power of the system. Also heat exchangers are simulated by using heat transfer correlations of shell and tube heat exchanger in details. The results of based condition showed the suitable performance of natural gas cycle from the thermodynamic and exergoeconomic point of view and notifies the importance of using the natural gas cycle. Solar collector and condenser of ammonia-water cycle because of their high cost value, are introducing as the components that shoud be more concidered from the exergoeconomic viewpoint. The parametric analysis results show that in high inlet pressure of ammonia-water turbine, the exergy efficiency and the total cost of the system heve more suitable values while the net output power of the system decreases. Also by changing the ammonia mass fraction, changing of output parameters has a complicated patern. Finally by increasing the pinch temperature difference in heat exchangers, the decreased amount of system’s thermodynamic performance is more than the amount of system’s economical performance improvement.
Kourosh Javaherdeh, Reyhane Rabiei, Mohammad Zoghi,
Volume 16, Issue 12 (2-2017)
Abstract

Considering the daily increase of consumption and expense of nonrenewable energies such as natural gas and electricity, application of clean and renewable energies such as solar thermal energy nowadays has been highly taken into consideration. In this research, at first, simple steam Rankine cycle and two different configurations of combined steam and organic Rankine cycles with parabolic trough solar collector as heat source are simulated from energetic and exergetic point of view. First configuration was basic steam rankine cycle with parabolic trough solar collector (PTSC) as heat source, and other configurations of the combined cycle worked as follows: In the second configuration (combined cycle with intermediate heat exchanger), with the increase of steam condenser pressure, heat dissipation in condenser is used as heat source for bottoming organic Rankine cycle and in the third configuration (combined cycle without intermediate heat exchanger), reduced-temperature solar fluid moving output of steam rankine cycle acted as the organic Rankine cycle heat source. Simulation results in the basic input state show that third configuration has the maximum amount of work and irreversibility and second configuration has the minimum amount of work and irreversibility which in this case, increase in the steam cycle condenser pressure leads to the reduction of work of combined cycle with intermediate heat exchanger, even lower than the simple steam cycle. On the other hand, second configuration has the maximum solar energy and exergy efficiency among three configurations which is due to the reduction of collector area required in this configuration.
Behzad Firouzeh, Kourosh Javaherdeh,
Volume 16, Issue 13 (Conference Special Issue 2017)
Abstract


Kourosh Javaherdeh, Mehdi Amin Fard, Mohammad Zoghi,
Volume 16, Issue 13 (Conference Special Issue 2017)
Abstract



Page 1 from 1