Showing 3 results for Karrabi
Mohammad Reza Aligoodarz, Faeze Derakhshan, Hadi Karrabi,
Volume 13, Issue 13 (First Special Issue 2014)
Abstract
The performance of turbine section of a gas turbine deteriorates over operation because of working in high temperature conditions and characteristics of the entry gas. On the other hand, due to complexity of the flow field within the turbine, three-dimensional analysis is required. This paper presents a numerical study of roughness effects on turbine flow field and performance. In this paper, effects of blade surface roughness caused by operation conditions on turbine performance were numerically calculated. Numerical calculations were carried out for the fourth stage of an axial turbine which was experimentally tested in the technical university of Hannover, using ANSYS software. Calculated results were verified with the measured data and showed a good agreement. To find out the effects of blade surface roughness on turbine stage performance and flow field, Two equivalent sand-grain roughness heights of 106㎛ (transitionally rough regime) and 400㎛ (fully rough regime) in four different mass flow rates were considered. Results showed that summation of efficiency reductions of the rough stator and rough rotor approximately equals to that of the totally rough stage for each roughness height and effect of stator roughness on efficiency reduction is same as the effect of rotor roughness on stage efficiency.
Mahmood Chahartaghi, Mojtaba Ghatee, Ali Samaee Nia, Hadi Karrabi,
Volume 13, Issue 13 (First Special Issue 2014)
Abstract
High temperatures and different properties of entering gas into the turbine of a gas turbine cycle can decrease its performance. Considering the complexity of the flow distribution inside the turbine, three-dimensional analysis to find out the flow and temperature field in the turbine stages is very important. As time passing the increasing of the roughness of blades is unavoidable. The aim of this paper is investigation of the blades roughness effects on flow field and efficiency of gas turbine with numerical calculations. In this research, a two-stage turbine is modeled in the form of three-dimensional and the results are validated with experimental data. Then the effects of blades roughness on flow field and performance of turbine in five pressure ratios is investigated. Also, in order to determine the role of stators and rotors in decreasing the turbine efficiency, in a special roughness, the first and second stators and then corresponding rotors have separately been examined and then this phenomenon affected on blades simultaneously. Results showed that the efficiency drop by applying all together on the turbine stage is approximately equal to summation of efficiency drops by applying separately.
Mahmood Chahartaghi, Mojtaba Ghatee, Ali Samaeenia, Hadi Karrabi,
Volume 14, Issue 15 (Third Special Issue 2015)
Abstract
With respect to special conditions apply to the gas turbine, its blades are affected by many different factors such as, hot corrosion, oxidation, wear, impact of external particles, and etc. and are destroyed. Due to the reduction of their working life time, the turbine efficiency reduces and ultimately the heavy costs of periodic repairs are needed, and also new replacements of their blades are unavoidable. The aim of this study is investigation of the effects of corrosion and blade damage on flow field and gas turbine performance, by numerical simulation. In this research, a two stage turbine is modeled in the form of three dimensional and the results are validated with experimental data. To analyze of the behavior of entire flow, conservation of mass, momentum, and energy equations are solved. The numerical simulation of the turbine is done with ANSYS CFX software. Then the increased rotors tip clearance effects with decreasing thickness due to corrosion in both nozzles and blade leading edge and trailing edge were separately studied on turbine flow field and its performance in five actual different pressure ratios. The results showed that the most important factor in reducing the efficiency of gas turbine is due to rotor tip clearance increasing. Also corrosion of the blade edge respect to the trailing edge damage is a little more affected on reducing efficiency and increasing loss coefficients.