Showing 7 results for Khorasanizadeh
Alireza Aghaei, Hoessin Khorasanizadeh, Ghanbar Ali Sheikhzadeh,
Volume 14, Issue 9 (12-2014)
Abstract
In this study, the effects of magnetic field on the flow field, heat transfer and entropy generation of Cu-water nanofluid mixed convection in a trapezoidal enclosure have been investigated, numerically. The side walls of the cavity are insulated, the top lid is cold and moving toward right or left and bottom wall is hot and the side walls angle from the horizon is 45˚. The results showed that with imposing the magnetic field and enhancing it, the nanofluid convection and the strength of flow decrease and the flow tends toward natural convection and finally toward pure conduction. For this reason, for all of the considered Reynolds numbers and volume fractions, by increasing the Hartmann number the average Nusselt number decreases. Furthermore, for any case with constant Reynolds and Hartmann numbers by increasing the volume fraction of nanoparticles the maximum stream function decreases. For all of the studied cases, entropy generation due to friction is negligible and the total entropy generation is mainly due to irreversibility associated with heat transfer and variation of the total entropy generation with Hartmann number is similar to that of the average Nusselt number. With change in lid movement direction at Reynolds number of 30 the average Nusselt number and total entropy generation are changed, but at Reynolds number of 1000 it has a negligible effect.
Ahmad Reza Rahmati, Hossein Khorasanizadeh, Mohammad Reza Arbyar Mohammadi,
Volume 16, Issue 7 (9-2016)
Abstract
In this paper, magnetogasdynamics with outlet Knudsen of 0.2 is studied in a pressure-driven microchannel. By using a developed code, the effects of changing magnetic field parameters including power and length with implementation of slip velocity at the walls has been simulated numerically. The geometry is a two dimensional planar channel having a constant width through all. The flow is assumed to be laminar and steady in time. In order to analyze the variation of velocity, pressure, Lorentz force and induction magnetic field, the governing equations for flow and magnetic fields have been solved simultaneously using the lattice Boltzmann. No assumption of being constant for parameters like Knudsen and volumetric forces are made. Another feature of this research is to improve the quantity of results which is a major problem in this method and many studies have been done in this area. This study represents the results tending to that of analytical relations by using a second order accuracy for calculation of slip velocity and correction of pressure deviation curve in compare with the past studies if a proper relaxation time is determined. The simulation results show a change in Fx profile to M if the length of external magnetic field length reduces to 40% of the whole. Removing applied magnetic field from both ends of the channel will increase pressure gradient at the intermediate part and displaces the section at which the maximum pressure deviation occurs. Slip velocity and centerline velocity behave different for the reduced magnetic field length.
Hossein Khorasanizadeh, Mojtaba Sepehrnia,
Volume 16, Issue 8 (10-2016)
Abstract
Effects of different inlet/outlet arrangements on thermal performance of porous microchannel heat sink MCHS of any geometry has not been studied yet. In this investigation, the effects of utilization of four different inlet/outlet arrangements on electronic chip cooling utilizing trapezoidal MCHS with porous microchannels with porosity of 0.88 have been studied numerically. For this purpose, three dimensional simulations of laminar forced convection flow in microchannels and conduction in solid parts of MCHS by applying constant heat flux of 150 kWm-2 at its base plate have been performed utilizing the finite volume method and the commercial Ansys-CFX code. The results show that the A- and B-type arrangements, for wich the inlet and outlet are in direction of flow in the microchannels, have a better heat transfer performance, smaller thermal resistance and provide more uniform temperature distribution in the MCHS base plate. The results indicate that using porous media is effective in reducing the MCHS base plate temperature and in this regard the D-type arrangement has the best performance among the heat sinks studied. Considering both the positive effect of using porous media on increasing the heat transfer coefficient and its negative effect on increasing the required pumping power, the A-type arrangement has the best performance.
Hossein Khorasanizadeh, Mojtaba Sepehrnia, Reza Sadeghi,
Volume 16, Issue 12 (2-2017)
Abstract
In this numerical study, three dimensional laminar flow, heat transfer and other thermal characteristics of a microchannel heat sink, consisting of seven isosceles triangular microchannels, have been investigated. For this purpose, conduction in the solid parts has been considered and two different horizontal inlet/outlet (I-type) and vertical inlet/outlet (U-type) arrangements have been considered. Simulations have been performed for a constant heat flux of 125 kWm-2 entering from the substrate. In previous studies flow of water in rectangular microchannles has been considered, but in this study CuO-water nanofluid has been utilized. The effects of the Brownian motion of nanoparticles and variation of thermophysical properties of the nanaofluid with termperature have been considered and their importances studied. The results show that with increasing pressure drop, the heat sink performance in terms of heat transfer, thermal resistance and uniform temperature distribution at subtrate improves for the two nominated arrangements. Also increasing the volume fraction to 2% improves the heat sink performance, but as it increases further the thermal resistance and the non-uniformity of temperature at the bottom plate enlarge with no heat transfer improvement. Making comparison with the results of the previous studies on the effect of inlet/outlet arrangement proves that the thermal performance is affected by both of the inlet/outlet arrangement as well as the shape and geometry of the microchannels. For the heat sink of this study with triangular microchannels the performance of the I-type arrangement is better than the U-type arrangement.
Alireza Aghaei, Hossein Khorasanizadeh, Ghanbar Ali Sheikhzadeh,
Volume 16, Issue 12 (2-2017)
Abstract
In this experimental study dynamic viscosity of hybrid engine oil (5w-50)-Cuo-MWCNT nanofluid for volume fractions of 0.05, 0.1, 0.25, 0.5, 0.75 and 1 percent of nanoparticles for temperatures of 5, 15, 25, 35, 45, 55 °C has been measured. This hybrid nanofluid has been prepared utilizing the two steps method. For viscosity measurement, the Brookfield viscometer has been used. The experimental measurments indicate that by increasing volume fraction of nanoparticles the viscosity increases; also by increasing the temperature the viscosity decreases. Based on the experimental results the maximum and minimum viscosity increases with volume fraction increase from 0.05 to 1 at a constant tempearture are 35.52 and 12.92 percent, respectively, relating to 55 and 15 °C. Measurement of the nanofluid viscosity with different volume fractions, shear rates and tempeartures indicate its Newtonian behavior. A new temperature and volume fraction dependent viscosity correlation, developed in this study to be used in numerical simulations, shows very good agreement with experimental results.
Hossein Khorasanizadeh, Soroush Sadripour, Ali Reza Aghaei,
Volume 16, Issue 13 (Conference Special Issue 2017)
Abstract
Mohammadreza Arabyarmohammadi, Ahmad Rahmati, Hossein Khorasanizadeh,
Volume 18, Issue 6 (10-2018)
Abstract
The purpose of this work is to provide a model in lattice Boltzmann method for D simulating thermal rarified gas flows. The study model is a microchannel with a square cross section. The magnetic field flux was created by the magnets on two facing walls. The electrodes are embedded on the walls adjacent to that of the magnets and DC voltage is applied at both ends. Compressible fluid behavior is compared in slip (Kn =0.15) and transient (Kn =0.1) regimes. There are assumptions of laminar and steady flow. Newtonian fluid is electrically and magnetically conductive. Slip and temperature jump on the microchannel walls are considered and the effects of electric double layer thickness and changes of Hartmann number are studied. Since the ionic process is non-isothermal, energy equation is coupled with that of the velocity and the magnetic field and the effects of interaction forces of Lorentz, electric and electrothermal have been entered into Boltzmann equations in separate terms. The outcomes show the interaction between an axial electric field and a transverse magnetic field results in three-dimensional nature of the flow. Navier-Maxwell second order slip boundary condition imposed on the electromagnetic channel walls plays an important role in the vortices formation and the temperature distribution across the channel goes out of the symmetric state. Mass flow rate loss along the channel, resulting from the fluid rarefaction, and pressure deviation from linearity, across and along the channel axis because of the compressibility, was observed