Search published articles


Showing 2 results for Kouhi Kamali

Shoaib Khanmohammadi, Kazem Atashkari, Ramin Kouhi Kamali,
Volume 15, Issue 9 (11-2015)
Abstract

Many researchers have been considered biomass utilization due to reduction of greenhouse gas effects and environmental impact recently. Achieving a system with the best performance for the application of this type of fuel with low calorific value is to be one of the topics of interest to researchers. This study focus on precise modeling of biomass gasification and design a trigeneration system to produce cooling, heating and electricity using this clean source of energy. In the process modeling of biomass gasification a realistic model includes tar content in syngas is developed. A parametric study of trigeneration system to find the objective functions trend and to achieve the best performance parameter is carried out. Results show that two objective functions in the reasonable range have conflict which emphasis to the multi-objective optimization. Also, with draw Pareto front curve, a suitable relation to estimate the trend of objective functions is derived.
Ali Chaibakhsh, Nasim Ensansefat, Aidin Kiyaei Jamali, Ali Jamali, Ramin Kouhi Kamali,
Volume 15, Issue 10 (1-2016)
Abstract

In this study, an application of support vector machines are presented for fouling detection and estimating the amount of deposit layer development and tube blockage percent at the radiation section of the crude oil preheat furnace. Crude oil preheat furnaces are the main elements in processing crude oil in distillation towers, which may always suffer from fouling and its consequent risks. In order to predict fouling inside the tubes, first by considering independent input parameters effecting the furnace performance and by using a dynamic model of a particular furnace, the behaviors of the furnace in unusual conditions were simulated. The effects of fouling type and its location inside the tubes were considered on the thermal performances and pressure drops of the furnace. In the second part, based on the different fouling scenarios, a fouling detection mechanism was designed. The operational conditions such as pressure drop inside the tubes, temperatures of the tubes and temperatures of the crude oil were employed for fouling detection and evaluating the thickness of deposits. The obtained results indicated the accuracy and feasibility of proposed approach.

Page 1 from 1