Sayed Mostafa Hosseinalipour, Masoud Madadelahi, Arvin Behravan, Matin Parvari,
Volume 14, Issue 5 (8-2014)
Abstract
A two dimensional numerical study is presented for steady state performance analysis of a catalytic radiant counter-diffusive burner. In these burners, the gaseous fuel enters from the rear of the burner and passes through the insulation and catalyst layers. The oxygen enters the catalyst layer from the burner surface and opposite to the fuel path. The reaction takes place over the catalyst layer. In this paper, the momentum, energy and species conservation equations in porous and non-porous media are solved using the finite element method in the COMSOL software. The simulations are based on proposed corrections on boundary conditions and combustion rate of methane equation. The simulation results compared with experimental measurements published in the literature for the same geometry and conditions which shows a considerable (10%) improvements. It is shown that diffusion of oxygen through the pad limits the catalytic combustion and controls the fuel conversion in the burner.
Sayed Mostafa Hosseinalipour, Mohammadmehdi Namazi, Arvin Behravan, Khashayar Ghadiri, Masoud Madadelahi,
Volume 14, Issue 9 (12-2014)
Abstract
In the present study, fabrication and performance testing of a flameless catalytic pad has been investigated. The catalyst was prepared with 1g of H2PtCl6.6H2O solved in 0.5 liter solvent contains 50% water and 50% ethanol and sprayed on the alumina - silica fiber mat as the catalyst support. The wet pad was dried and calcined before usage. The performance of the heater was evaluated by design and fabrication of a test stand which was capable of measuring parameters such as temperature at surface and in depth of the catalyst layer, the amount of pollutants such as CO and NOx, flow rate and pressure of the fuel and surface air circulation in front of the pad. In addition, by placing the panel containing the pad in an environmental test chamber, the effect of different climate conditions in five cities of Iran, i.e., Borojerd, Khalkhal, Lavan, Mahshahr and Puladshahr were investigated. Average surface temperature of the pad was measured about 350°C. No NOx was detected and CO emission of the burner was measured up to 5ppm. In Khalkhal conditions with the lowest temperature and humidity, the highest temperature at surface was recorded and the maximum CO emissions in Mahshahr with the highest temperature and humidity was about 3ppm. It was shown that increasing the fuel flow rate increases the surface temperature and CO emissions. It was also shown that an increase of environment temperature and humidity, increases the surface temperature.