Search published articles


Showing 5 results for Mahmoudimehr

Vahid Khalilzadeh Bavil, Javad Mahmoudimehr,
Volume 15, Issue 10 (1-2016)
Abstract

This study is concerned with optimizing the daily operation of a solar power plant equipped with thermal energy storage system (TES). The modeling is performed by solving a set of non-linear governing equations and is verified through comparison with the literature. "Maximum production period" and "maximum revenue" constitute the objectives of the optimization study which are first considered individually (as two single-objective problems) and are then considered simultaneously (as a multi-objective problem). Genetic Algorithm (GA) is employed as the optimization tool. The results of the first objective (maximum production period) shows 7 hours increase in the daily production time as a result of employing the TES system. This occurred through saving energy during the times of high solar radiation and using the stored energy for electricity generation during the times of low or zero solar radiation. The results of the second objective (maximum revenue) indicate 13.5% increase in the produced profit as a result of employing the TES system. This improvement was resulted from saving energy during the times of low electricity price and using the stored energy for maximum electricity generation during the times of high electricity price. Finally, in the multi-objective study, 5 hours increase in the production period and 8.1% increase in the revenue were simultaneously obtained as a result of a proper tradeoff between the two objectives.
Mina Rasouli, Javad Mahmoudimehr,
Volume 16, Issue 7 (9-2016)
Abstract

Air staging is defined as the supply of inadequate air from the primary stage to the reaction zone, and the completion of the air supply through the next stage or stages. This study is concerned with the optimization of the air staging system of a burner with two air inlets and one fuel (natural gas) inlet with the help of numerical modeling. The equivalence ratio of the primary air (with the assumption of a fixed total air mass flow rate), and the distance between the two air inlets constitute the design variables of the problem. In the previous research works, the air staging technology has been mainly employed as a method to reduce the emission of NO. However, in the current study, in addition to the emission of NO, the emissions of CO and soot, and radiative heat transfer from the flame are considered as the objective functions. The results show that increasing the level of air staging (or the equivalence ratio of the primary air) has contradictory effects on the objective functions so that, as positive influences, it increases the radiative heat transfer from the flame and decreases the emission of NO, and as negative effects, it increases the emission of both CO and soot. The results also indicate that when all the previously mentioned objectives are considered simultaneously, the optimal case, which is selected based on the Pareto front concept, is the case in which the primary air is about 20% of the theoretical air.
Tohid Khakzand, Ramin Kouhikamali, Javad Mahmoudimehr,
Volume 17, Issue 2 (3-2017)
Abstract

Spray combustion is utilized in a number of engineering applications such as energy conversion, military industrial, furance and propulsion devices. Current work focused on the effect of liquid fuel droplet diameter on the efficiency of the combustion chamber and formed emission such as NOx and CO in a two-dimensional axisymmetric combustion chamber. The discrete phase model approach employed for simulating Combustion. The gas phase is simulated using an Eulerian approach; while the droplets are treated with a Lagrangian method. The coupling between the two phases and effect of radiation is considered. The mixture-fraction/probability density function (PDF) equilibrium chemistry model is used to predict the combustion of the vaporized fuel. Also, the conservative equations of mass, momentum and energy in the turbulent flow field were solved in conjunction with the k–ε two equation turbulence model. A numerical simulation was carried out to study the influence of droplet size on the formation and emission of NOx and other contaminants. This effect was investigated under different droplet diameter and type of injection. The following conclusions be drawn: Smaller droplets produce higher NOx emission than the larger ones. Larger droplets produce higher CO than Smaller ones.
Ali Bahari, , Javad Mahmoudimehr,
Volume 18, Issue 6 (10-2018)
Abstract

The use of biomass by means of gasification to produce bio fuels and reducing the environmental impact of fossil fuels has been the focus of many researchers in recent years. In the present study, the computational fluid dynamics method is used to predict the process of gasification inside a downdraft gasifier. Recent studies have shown that although many studies have been carried out by various researchers to maximize the cold gas efficiency in the gasification process, so far, no study has been done to minimize the emission of pollutants as one of the other important design parameters along with the increase of cold gas efficiency. So, in this study, the effect of changing the equivalence ratio as design variable on the gasification efficiency as well as the amount of pollutant produced simultaneously is investigated. Also, in this study, CO/CO2 and H2 /H2O molar ratios are considered as another objective function in selecting the optimal process point. In order to verify the validity of the results, the simulation data was compared with the experimental results and the previous numerical study, and a good agreement was shown between their comparison. The results of this study show that in the ratio of 0.64, the rate of production of nitrogen oxides relative to cold gas efficiency is optimal considering the maximum production of CO/CO2 and H2/H2O molar ratios . This point is the optimal point. Under the working conditions of the gasification process.
A. Riahi , K. Atashkari, J. Mahmoudimehr ,
Volume 19, Issue 3 (March 2019)
Abstract

Cavity receiver in solar tower concentrator usually experiences highly intense radiation. Due to asymmetric concentration of solar rays, non-uniform heat flux distribution occurs on the different parts of the cavity receiver. This non-uniform distribution leads to uneven thermal expansion and stresses in receiver, which affects the reliable operation and reduces life time of receiver parts. Therefore, it is necessary to reduce the non-uniformity of solar flux on the surface of the absorber tubes and different parts of the solar reactor. The aim of this study was to focuses on the distributions of concatenated solar flux over graphite tubes of a 50kW solar reactor, which was previously designed for methane thermal dissociation at the focus of a solar furnace. In this study, the absorbed solar power on the different parts of the reactor is determined by Monte Carlo ray tracing method. Moreover, the effect of aperture size and the absorptivity of receiver parts on the net magnitude and distribution of absorbed power in reactor are investigated. The results prove that the 16cm aperture absorbs the maximum power and leads to even better solar flux distributions. Replacing the absorbing walls by the reflective walls will also result in more power absorbed by the tubes and better uniformity of flux distribution around the tubes.


Page 1 from 1