Search published articles


Showing 2 results for Moazami Goudarzi

Misagh Imani, Ali Moazami Goudarzi, Jaber Mahdinejad,
Volume 14, Issue 4 (7-2014)
Abstract

Recently, the use of coronary stents in interventional procedures has rapidly increased and different stent models, with different geometries and materials, have been introduced in the market. In order to select the most appropriate stent model, it is necessary to analyze and compare the mechanical behavior of different types of stent. In this paper, finite element method is used for investigating the effect of stent geometry and material properties on its behavior. Two commercially available stent designs with different geometries (the Palmaz–Schatz and NIR stents) and two different stent materials (stainless steel 304 and Cobalt alloy MP35N) are modeled and their behavior during the deployment is compared in terms of stress distribution in the stent and vessel, and outer diameter changes. Moreover, the effect of stent geometry and material properties on the restenosis after coronary stent placement is investigated by comparing the stress distribution in the arteries. According to the findings, the possibility of restenosis after coronary stenting is lower for NIR stent in comparison with Palmaz–Schatz stent. Moreover, stainless steel 304 is more suitable material for manufacturing stents, in comparison with the other one.
Sayed Misagh Imani, Sayed Mahmood Rabiee, Ali Moazami Goudarzi, Morteza Dardel,
Volume 17, Issue 9 (11-2017)
Abstract

The use of porous scaffolds for repairing the damaged bone tissues has been increased in recent years. As exploration of the mechanical properties of the scaffolds on the basis of experiments is time consuming and uneconomic, mathematical models are increasingly being introduced into the field, but most of them rely on finite element method and theoretical studies are rarely found in the literature. In this paper, different micromechanical models are presented for obtaining the effective elastic properties of bone scaffolds. Using these models, the mechanical properties of different scaffolds, including ceramic and composite bone scaffolds, are investigated. Single scale and multi-scale modeling approaches are used to simulate the ceramic and composite scaffolds, respectively. Furthermore, because of the wide application of hydroxyapatite in fabrication of bone scaffolds, the mechanical properties of hydroxyapatite scaffolds in different porosities are obtained in the current study by means of the presented methods. Results show that Dewey, self-consistent and differential schemes are the best methods in calculation of the value of Young’s modulus of these scaffolds in porosity ranges of less than 30 %, 30 to 60 % and more than 60 %, respectively. Moreover, self-consistent scheme gives good estimation of the value of Poisson’s ratio of hydroxyapatite scaffolds in different porosities. By obtaining the values of the mechanical properties of the scaffolds in different porosities by these models and using the statistical analysis, the mathematical relationship between the porosity and the mechanical properties of this kind of scaffolds (Young’s modulus and Poisson’s ratio) is obtained.

Page 1 from 1