Search published articles
Showing 2 results for Moeinaddini
Volume 6, Issue 2 (Spring 2018)
Abstract
Aims: Nowadays, dangerous chemical pollutants by a numerous of natural and synthetic sources are produced and released to the environment. These pollutants have short-term and long-term effects on human health. The purpose of this paper is to examine the impact of climate parameters and instability indices on air pollution in Tehran-Iran.
Materials and Methods: To evaluate the impact of meteorological parameters and indices of stability and instability on sensitivity analysis in Tehran-Iran, the Sharif University monitoring station was selected for air sampling and analysis. Sampling was performed from March 2011 to July 2012 in Tehran.
Findings: Results of sensitivity analysis showed that average daily change of the concentration of pollutants throughout the year was very different and intensively influenced by meteorological parameters. Results showed that wind direction (WD) (82%) and relative humidity (32%) and temperature (20%) have the most influence on the concentration values of pollutants carbon monoxide (CO), particulate matter (PM10), and air quality index (AQI). The highest concentrations of CO occurred in summer and lowest in winter, and maximum concentration of PM10 was in autumn, and its lowest concentration was in spring. Results revealed that the lowest average of AQI occurred in the spring, while in autumn, winter, and summer have almost equal values, but in winter AQI has slightly higher values.
Conclusion: According to the results of this research in Sharif station Tehran, the WD has the highest impact percentage (82%) on the concentration of pollutants. The highest concentrations of CO occurred in summer, and maximum concentration of PM10 was in autumn.
Maryam Moeinaddini, Seyed Abdolreza Ganjalikhan Nasab,
Volume 16, Issue 3 (5-2016)
Abstract
This study presents a numerical investigation for laminar mixed convection flow of radiating gases in an inclined lid-driven cavity. The fluid is treated as a gray, absorbing, emitting and scattering medium. The governing differential equations consisting the continuity, momentum and energy are solved numerically by the computational fluid dynamics (CFD) techniques to obtain the velocity and temperature fields. Discretized forms of these equations are obtained by the finite volume method and solved using the SIMPLE algorithm. Since the gas is considered as a radiating medium, besides convection and conduction, radiative heat transfer also takes place in the gas flow. For computation of the radiative term in the gas energy equation, the radiative transfer equation (RTE) is solved numerically by the discrete ordinate method (DOM). The effect of lid driven speed, on the thermohydrodynamic behavior of two-dimensional cavity is carried out. Results are shown as contours of isotherms, streamlines and distributions of convective and total Nusselt numbers along the bottom wall of cavity. It is revealed that increasing in Reynolds number causes almost uniform temperature distribution in cavity, especially for 30° and 60° inclination angles.