Search published articles


Showing 2 results for Mohammadinia

Mehdi Zohoor, Bahman Ghorbani, Mohammad Mohammadinia, Ali Reza Fallahi Arezoodar,
Volume 16, Issue 1 (3-2016)
Abstract

Electromagnetic forming is a high energy rate forming process which is applied for manufacturing and assembly of many parts that are used in automobile and aerospace industries. In this process, the electromagnetic body forces (Lorentz forces) are used to produce metallic parts. Joining high electrical conductivity parts by using electromagnetic forming process is as an innovative method. Therefore, it is very important to use a proper technique for assuring the quality of the Strength of Electromagnetically Joints. In this article, this process was simulated in ABAQUS. Then geometric, physical and mechanical specifications of the tube and coil are entered to subroutine and the magnetic pressure is obtained and by applying them on tube in ABAQUS software, agent analysis of the process and deformation of the work-piece is obtained. The effective process parameters such as discharge voltage, clearance between the tube and die, wall thickness and length of the tube on depth of bead were experimentally investigated by design of experiment technique based on Taguchi Method and signal to noise. Finally, found very good agreement between simulation and experimental results. The depth of bead in sequential coupled algorithm compared to experimental result had about 4% error.
Amir Mostafapour, Vahid Mohammadinia,
Volume 16, Issue 6 (8-2016)
Abstract

Sever plastic deformation process in one of the important methods to produce nanostructures materials that is highly regarded in two past decades. Accumulative press bonding (APB) is a novel variant of severe plastic deformation processes (SPD), which is devised to produce materials with ultra-fine grain (UFG). In the present work, effect of APB technique on mechanical properties and microstructural of AA1100 alloy, were investigated. The study of the microstructure of AA1100 alloy was performed via optical microscopy. This article revealed that the grain size of the produced samples decreased to 950 nm, after six passes of APB process. The yield strength of AA1100 alloy after six passes of the process increased up to 264 MPa, which is three times higher than that of the as-cast material (89 MPa). After six passes, microhardness values of AA1100 alloy increased from 38 to 61 HV. Furthermore, the results showed that the behavior of variations in mechanical properties are in accordance with the microstructural changes and it can be justified by using the Hall-Patch equation. Moreover, the rise in the yield strength can be attributed to the reduction of the grain size and strain hardening phenomenon.

Page 1 from 1