Search published articles


Showing 3 results for Nobakhti

A.h. Bolandi Kashani, M.h. Nobakhti , M. Khayat ,
Volume 19, Issue 1 (January 2019)
Abstract

Shan-Chen model is the most common model for simulation of multiphase flows using lattice Boltzmann method. The entire multiphase Lattice Boltzman models are limited to regimes, where the temperature dynamics are either negligible or their effects on the flow are unimportant. The entire multiphase LBE models are limited to regimes where the temperature dynamics are either negligible or their effects on the flow are unimportant. The multiphase isothermal lattice Boltzmann equation (LBE) model and single phase thermal LBE (TLBE) model were described. In this research, by combining these two models, the thermal two-phase LBE model was proposed. The coupling of the two models is through a suitably defined body force term. Due to the external nature of this coupling, the new model will have the same stability as the isothermal two-phase model. For this purpose, the scalar thermal model was initially neutral and, then, the Shan-Chen model was expressed in homogeneous state. Also, droplet falling on a heated solid surface and positioning droplet on heated solid surface in different Rayleigh and Reynolds number and different diameter size of droplet were considered. Results show that the temperature in the multiphase flow, as a barrier, delays achieving a stable state, and the fake speed created at the interface area in the temperature field also affects.

A.h. Babaei, R. Aghaei Togh, M.h. Nobakhti, M.j. Montazeri,
Volume 19, Issue 5 (May 2019)
Abstract

In the high-pressure gas-turbines, with hot-flowing gas through the stator channels with a high mass-flow rate, even slight variation in the blade geometry will have significant effects on the downstream flow-field. These minor changes can be compared to corrosion rates. The first occurrence of this corrosion is the non-uniformity of flow in the stator-rotor axial distance. This non-uniform flow, due to the complex pattern of vortices, prevents the complete transfer of fluid energy to the rotor and greatly reduces the turbine performance. In this research, a high-pressure turbine is considered to be at high risk of corrosion. The main goal is to predict these variations due to corrosion. Firstly, a 3D numerical analysis of the turbine initial model was conducted to accurately observe the flow field and the results were validated by the existing experimental results. Then, in order to investigate the effects of corrosion on the turbin performance, the blades geometrical changes were applied in stator blade profile and the flow distribution was analyzed. Results show that the highest corrosion risk is at the trailing-edge of the blades. Due to reduction in the stator inlet-outlet area ratio, the axial-velocity is reduced. But simultaneously, with increasing the stator channels outlet area, the mass-flow rate is increased by 7.31%. Therefore, the turbine undergoes to an off-design condition. The flow pattern will be more complicated in the rotor's entrance, and corrosion will develop rapidly due to temperature rise as the flow separates from the rotor blades.

M.m. Karimi, R. Aghaei Tough, M.h. Nobakhti, M.j. Montazeri,
Volume 20, Issue 2 (February 2020)
Abstract

The supersonic turbines are widely used in various industries and power generation systems, including gas turbines, space propulsion, heavy transport industries, and etc. In general, these turbines are used when a high specific work with a low fluid Mass flow is needed. It is possible to extract a high specific work from small height supersonic impulse blades in these turbines. To prevent losses due to the low blades aspect ratio, the turbine is used in partial-admission conditions; so that, the fluid flow is only fed from a part of the rotor. The degree of partial-admission and the type of blade profile are important factors that have significant effects on the turbine performance. The aim of this work is to design and investigate the effects of various types of impulse blade profiles on the turbine’s performance. A preliminary design code is developed in order to predict turbine performance. These results are evaluated using the experimental results. In the next step, using the calculation of design code, two-dimensional profiles are created using different design methods and numerically analyzed. Finally, the profiles that were better than the original model were studied by 3D numerical analysis. It was found that the performance parameters such as efficiency, power, and torque are increased by more than 8% in the selected best model, in comparison with the original model. Moreover, the total pressure loss is 12% decreased for the selected model. In general, the results show that the selected profile would have a superior performance.
 



Page 1 from 1