Showing 2 results for Panahizadeh Rahimloo
Yaghoob Dadgar Asl, Mehdi Tajdari, Hassan Moslemi Naeini, Behnam Davoodi, Roohollah Azizi Tafti, Valiollah Panahizadeh Rahimloo,
Volume 15, Issue 7 (9-2015)
Abstract
One of the most important issues in the review of cold roll forming process of metals is estimation of required torque. The optimum production line can be designed by determining the effective parameters on torque. Some of these parameters are sheet material and thickness, bending angle, lubrication conditions, rolls rotational speed and distance of the stands. The aim of this study is to predict amount of required torque considering the factors influencing torque, including thickness, yield strength, sheet width and forming angle using artificial neural network. So the forming process was 3D simulated in a finite element code. Simulation results showed that with increase of yield strength, thickness and forming angle, applied torque on rolls will increase. Also the increase in sheet width -assuming constant web length- will decrease the torque needed for forming. The effects of thickness and sheet width were experimentally investigated which verified the results obtained by finite element analysis. A feed-forward back-propagation neural network was created. The comparison between the experimental results and ANN results showed that the trained network could predict the required torque adequately.
Yaghoub Dadgar Asl, Mohammad Morad Sheikhi, Ali Pourkamali Anaraki, Vali Ollah Panahizadeh Rahimloo, Mohammad Hosseinpour Gollo,
Volume 16, Issue 5 (7-2016)
Abstract
Today, with the development of technology, industries such as automotive and construction require products with variable cross section. Multiplicity of steps, dimensional limitation and high production costs of the components caused flexible roll forming process used to produce these products. One of the main defects in this process is the fracture phenomenon. The fracture is observed on the bending edges at transition zone that sheet thickness is large compared to the bending radius. In this research the fracture phenomenon is investigated on flexible roll forming process of channel section using ductile fracture criteria. For this purpose finite element simulation of the process using Abaqus software is done. The fracture defect in this process is investigated using six ductile fracture criteria by developing a subroutine. Experimental tests are performed on 27 specimens precut sheet of AL6061-T6, using flexible roll forming machine built in Shahid Rajaee University. By comparing simulation results with experimental results, numerical results were validated. In addition, by comparing the results of ductile fracture criteria with experimental results, the Argon ductile fracture criteria, was chosen as the most appropriate criterion to predict fracture. Also the effects of parameters as sheet thickness, bending radius and bending angle on fracture with argon selected criterion is studied.