Search published articles


Showing 2 results for Pasandideh Fard

Abbas Khalghani, Mohammad Hassan Javareshkian, Mahmoud Pasandideh Fard,
Volume 16, Issue 1 (3-2016)
Abstract

The flight dynamics of nine configurations of supersonic continuous deflectable nose guided missiles have been investigated. The studied configurations consist of a spherical nose tip, a tangent ogive, a set of stabilizing tail fins and a cylindrical body that its mid-section is flexible to form an arc of a circle. So the cylindrical body consists of a fix part in vicinity of nose, middle flexible part and main body with stabilizers. The effects of fix length and flexible length parameters on the flight dynamics of surface to surface, antiaircraft and antimissile missiles have been studied. A code has been developed to solve full Navier-Stokes equations using finite volume and modified Baldwin-Lomax turbulence model. Further, a 3 degree of freedom code has been developed to compare planar flight dynamics of missiles. This code consists of a guidance subroutine based on pure persuit law. The results show that even increase of fixed and flexible lengths enhance the maneuverability of the missile, but in some scenarios this can lead to increased flight time and more errors in the target engagement. Deflected nose relocates mass center away from the axis and a thrust vector torque is created. Study of surface to surface scenario shows that this torque improves accuracy of targeting and the ability of target dislocation. In air defense missiles, increase of Fix and Flex variables, will extend the limits of allowable firing angle. However, a heavy nose increases the role of thrust torque and subsequently decreases the role of nose geometry.
Mohammad Ghaffari, Mahmood Pasandideh Fard, Mahmood Tabaki,
Volume 16, Issue 12 (2-2017)
Abstract

In this article, cavitation flow around axisymmetric projectiles with ringed and non-ringed cavitator has been investigated using control volume and boundary element methods. In the numerical method, the homogeneous equilibrium approach as well as the zwart model, for modeling the mass transfer and forming the system of equation, have been used. In the boundary element approach with dipole distribution on the body and cavity surfaces and source distribution on the cavity surface, the right conditions were set for using the Green's theorem in solving the potential flow. Moreover, some source components were imposed on the cavitator surface in order to add the hole effects. The validation procedure for both methods has been done by analytical and experimental data. In general, the results of this research are presented in two parts. In the first part, hydrodynamic properties of ringed cavitator such as cavity dimensions, intended forces, flow behavior and etc are analysed deploying the numerical methods based on Navier Stokes equations. In the second part, the boundary element method has been used for the analysis of the cavitation flow around practical geometries with ringed cavitator. The most important finding of this study is reduction of the cavity dimensions and also an increase in the force on the projectile during the use of annular cavitator. In addition, as a result of this study, two equations for maximum length and maximum diameter of the formed cavity on the cylindrical body in relation to the cavitation number and hole diameter have been provided.

Page 1 from 1