Search published articles
Showing 2 results for Rafeeyan
Seyed Alireza Moezi, Mansour Rafeeyan, Saeed Ebrahimi,
Volume 15, Issue 2 (4-2015)
Abstract
The present study aims to implement an approach for trajectory control of a 3-RPR parallel manipulator over a path with obstacles in the workspace. For this purpose, using the spline curves approach and based on the cuckoo optimization algorithm, a smooth reference trajectory with minimum length is generated in the workspace to avoid robot collision with obstacles. The performance and accuracy of the cuckoo optimization algorithm in converging to the optimal solution is then compared with the Genetic algorithm. In the next step, the robust sliding mode control technique is adopted for trajectory control of the robot in the presence of some uncertainties. These uncertainties usually include the links length and links mass of the robot. The obtained results confirm the demanded level of performance and accuracy of the cuckoo optimization algorithm. It is also observed that the optimal trajectory with minimum length is generated using the spline curves approach. In addition, it is concluded that based on the sliding mode control technique, the robot can follow the desired trajectory very precisely in spite of the presence of the uncertainties in length and mass of the robot's links.
Saeed Ebrahimi, Mohammad Hadi Ghodsi, Mansoor Rafeeyan,
Volume 17, Issue 4 (6-2017)
Abstract
The problem of power loss in rotating machinery subjected to the angular misalignment and unbalancing faults are of great importance in relevant industries. Therefore, in this study, evaluation of the power loss and bearing forces of a typical coupling-disk-shaft system with angular misalignment and unbalancing faults is conducted using a novel approach based on the multibody dynamics. In this concern, the flexible coupling is modeled by linear and torsional spring-damper elements. After introducing the model, the kinematic constraints as well as the general form of Euler-Lagrange equations of motion are expressed. Then, the generalized forces are derived in detail. The equations of motion are then solved numerically by the 5th order Runge-Kutta method to evaluate the system power loss. In addition, the effect of angular misalignment and unbalancing faults on the disk displacements as well as the bearing forces are discussed. In the next part of this study, the theoretical results of the power loss are verified experimentally on a faulty simulator system. For measuring the power consumption, a digital power analyzer is used. The results of this research highlight clearly how the power loss is affected by increasing the amount of the system rotational velocity, the angle of misalignment, and the unbalance mass.