Search published articles


Showing 1 results for Rahmati-Alaei

A. Rahmati-Alaei , M. Shahravi, M. Samadian Zakaria,
Volume 20, Issue 2 (February 2020)
Abstract

In this paper, the CFD-MBD numerical coupled model has been proposed for an accurate evaluation of the behavior of the partially filled railway tank wagon. The vibration response of the wagon has been obtained by the fourth-order Runge-Kutta method based on the three-dimensional multibody dynamic (MBD) model with 19 degrees of freedom comprising car-body, two bogies, and four wheel-sets. The model of transient fluid sloshing inside the tank has been analyzed using the computational fluid dynamics (CFD) method combined with the volume of fluid (VOF) technique for solving the Navier-Stokes equations and tracing the fluid free surface, respectively. Validation of the numerical results has been carried out using experimental data. Then, the simultaneous interaction of the transient fluid slosh and the wagon dynamics has been considered through the development of the numerical process of coupling CFD and MBD models. The dynamic characteristics of a partially filled tank wagon have been derived in braking conditions using parametric study on the filled-volume, tank cross-section shape, and fluid viscosity. The results indicate that the filled-volume increase decreases the amplitude of the fluid's center of gravity coordinate. The lowest fluid slosh in the different filled-volumes has been related to the modified-oval cross-section. The fluid viscosity has a slight effect on the longitudinal fluid slosh force and the stopping distance of the railway tank wagon.
 


Page 1 from 1