Showing 13 results for Shahmardan
Mohammad Mohsen Shahmardan, Mahmood Norouzi, Amir Naqhikhani,
Volume 14, Issue 6 (9-2014)
Abstract
In this paper, numerical solution of non-Newtonian fluid flow through a channel with a cavity is studied. Carreau-Yasuda non-Newtonian model which represent dependence of stress on shear rate well is used and the effect of n index of model on attribute of flow is considered. Governing equations are discretized using finite difference method on staggered mesh and the form of allocating flow parameters on staggered mesh is based on marker and cell method. For dependence between continuity and momentum equations, artificial compressibility method is used. Numerical results express that with decrease of n index, the developing length is increased and the velocity in center of channel and pressure drop of flow are decreased.
Mohammad Hadi Sedaghat, Mohammad Mohsen Shahmardan, Mohsen Nazari, Mahmood Norouzi,
Volume 14, Issue 8 (11-2014)
Abstract
In this paper, the immersed boundary-lattice Boltzmann method has been employed to simulate non-Newtonian flow around curve boundaries. The pressure base lattice Boltzmann equations have been used to solve the Eulerian domain to estimate proper pressure gradient in the Poiseuille flow. In addition Immersed boundary method (IBM) utilizes a discrete set of force density is also used to represent the effect of boundary on flow domain. In addition to simulate the real physical dominate problem and study the right effects of non-Newtonian fluid properties, scaling parameters have been introduced to notice the relationship between physical and lattice variables. At First, the capability of present method is examined for simulating the power-law fluid flow around a confined circular cylinder and the results show good agreement with previous study. In the following, the power-law fluid flow around elliptical cylinder in a channel is investigated for three aspect ratios eta=1,1.5,2 and for 5
Mohammad Mohsen Shahmardan, Mahmood Norouzi, Hassan Hassanzadeh, Amin Shahbani,
Volume 15, Issue 4 (6-2015)
Abstract
Due to the diversity and width applications of polymeric fluids in various industries the investigation of viscoelastic fluids is noted by many researchers. In this study, non-creep flow of viscoelastic fluid has investigated inside planar channel with gradual expansion for the expansion ratio of 1:3. The laminar and incompressible flow of viscoelastic fluid has been simulated numerically using finite volume method and PISO algorithm. The nonlinear PTT rheological model has been applied to study effect of elasticity property on the length of vortices in polymeric fluid flow. The investigation of symmetric and asymmetric vortices length in a wide range of Reynolds and Weissenberg numbers is the main purpose of present study. The three angles of 30, 45 and 60 degrees have been considered for influence of the expansion angles on the length of vortices. The study of polymeric fluids flow through the planar channel with gradual changes in cross section (with expansion angles less than 90 degrees) is the innovation of this research. Also the critical values of first and second for Reynolds and Weissenberg numbers have been expressed in various expansion angles and furthermore length of second and third vortices has been presented as a function of Reynolds and Weissenberg numbers. The length of symmetric vortices decreases with increment of elastic property at all expansion angles for values of Weissenberg numbers less than one. Whereas the growth of expansion angle leads to increase in the length of symmetric and asymmetric vortices for low Reynolds and Weissenberg numbers.
Mohsen Nazari, Nasibe Babazadeh, Mohammad Mohsen Shahmardan, Mojtaba Ashouri,
Volume 15, Issue 6 (8-2015)
Abstract
Transient heat transfer from a storage fluid around a central tube is experimentally investigated in a wide range of Reynolds number, i.e. 700
Mohammad Hadi Sedaghat, Mohammad Mohsen Shahmardan, Mahmood Norouzi, Mohsen Nazari,
Volume 15, Issue 9 (11-2015)
Abstract
In this paper 2D numerical model is used to study the effect of depth of airway surface liquid (ASL) on the muco-ciliary transport. An immersed boundary-lattice Boltzmann method is used to solve the momentum equation. In this study mucus is considered as the viscoelastic fluid an Oldroyd-B model is used as the constitutive equation of it. Immerse boundary method is used to study the propulsive effect of the cilia and also the effects of mucus– periciliary layer interface. Our results show that mean mucus velocity becomes maximized when the PCL depth is equal to the standard value of it i.e. 6 μm. By increasing or decreasing the depth of PCL or increasing the depth of mucus layer, mean mucus velocity reduces. Our study also shows that mucus viscosity ratio can play an important role on the muco-ciliary clearance. It means that by increasing the Newtonian part of mucus viscosity or by decreasing elastic contribution of the mucu, mean mucus velocity increases significantly. So reducing mucus velocity results from changing ASL depth can be completely modified by increasing the Newtonian part of mucus viscosity.
Mohammad Mohsen Shahmardan, Ali Montahaee, Mahmood Norouzi,
Volume 16, Issue 12 (2-2017)
Abstract
In the current research, laminar flow and heat transfer of viscoelastic fluid in an axisymmetric sudden expansion whit expansion ratio of 1:3 is investigated. Finite volume method and PISO algorithm are used for numerical simulation of flow and heat transfer of viscoelastic fluid. As well as, for study the effect of elasticity property of polymeric fluid flow, nonlinear Phan-Thein-Tanner (PTT) rheological model is used. Most of the researches which has been done in this field are focus on investigating hydrodynamic parameters of flow like study the effect of Reynolds number and elasticity property on vortices length, so due to the scarcity of comprehensive study about the heat transfer of viscoelastic fluid flow in sudden expansion, performing present study seems necessary. Considering some of the rheological and thermodynamic properties of viscoelastic fluid as function of temperature is the other innovations of current study, which because of the sensitivity of some of the viscoelastic properties to temperature, considering this hypothesis for solving energy equation seems essential. The results of numerical simulation shows that the maximum quantity of local Nusselt of sudden expansion for downstream wall is approximately where vortices are finished and the procedure of velocity variation is like smooth pipe. Also, whit increasing Reynolds number that led to enhancing length and intensity of vortices, the maximum local Nusselt in sudden expansion region move further toward downstream.
Amin Shahbani Zahiri, Hassan Hassanzadeh, Mohammad Mohsen Shahmardan, Mahmood Norouzi,
Volume 17, Issue 6 (8-2017)
Abstract
In this paper, the heat transfer of viscoelastic fluid flow have numerically simulated inside a symmetric planar channel with 1:3 abrupt expansion. For modeling the rheological and nonlinear behavior of inertial flow related to the viscoelastic fluid, exponential form of the Phan Thien-Tanner (EPTT) model has been used. The thermal boundary condition of constant temperature has been considered at the inlet and on the walls of channel. Also, velocity is uniform and constant at the inlet of channel and its value is determined by the Reynolds number of flow. Due to the significant effect of temperature on the viscoelastic fluid properties, viscosity, relaxation time, specific heat capacity and thermal conductivity have been taken as a function of temperature and dissipation term has been employed in the energy equation. For coupling the governing equations, the PISO algorithm is utilized and finite volume method (FVM) is employed for discretizing these equations. In this study, the effect of inertial force is investigated on the velocity distribution, temperature distribution and variation of local and average Nusselt numbers in the expanded part of channel. Despite the symmetry in the planar channel, increasing the Reynolds number forms the symmetric and asymmetric flows inside the expanded part of channel. For asymmetric flows, increase of Reynolds number from 40 to 100 (growth of 2.5 times the Reynolds number) resulted in a 1.7-fold increase for the maximum values of local Nusselt numbers in the vicinity of the upper and lower walls of the channel expanded part.
Mahmood Norouzi, Alaleh Anaraki Haji Bagheri, Mohammad Hadi Sedaghat, Mohammad Mohsen Shahmardan,
Volume 17, Issue 12 (2-2018)
Abstract
In this paper, 3D investigation has been employed to study the wake instability of viscoelasic fluid flow behind unconfined sphere. For estimating the proper properties of the viscoelastic fluid in this study a non-linear Giesekus model is used as the constitutive equation of viscoelastic fluid. Numerical computations are carried out by solving the governing and the onstitutive equations of the viscoelasic fluid flow using the finite volume technique and OpenFOAM which is an open source code is used as the CFD solver. At first velocity field and flow streamlines of Newtonian fluid around the sphere for various Reynolds numbers have been plotted and by plotting the velocity magnitude and pressure at a point behind the sphere versus time, the value of Recr in which the flow become unstable has been reported. Furthermore, for validating the present numerical code, variation of drag coefficient around the sphere versus Reynolds number has been compared with previous investigations. In the following, the effect of Reynolds and Wisenberg number on fluid flow and instability of wake formation behind a sphere have been investigated at high values of Reynolds number for the first time. Results show that at high values of Reynolds number the effect of Wisenberg number has less effect in contrast with Reynolds number on flow instability behind the sphere.
Mohammad Kazem Sheykhian, Mahmood Norouzi, Mohammad Mohsen Shahmardan,
Volume 18, Issue 3 (5-2018)
Abstract
The collision of droplets on solid surfaces is widely used in oil and gas industry, surface painting, hot surface cooling and spraying of agricultural products. In the present study, the spreading factor of Boger non-Newtonian fluid is experimentally investigated on the dry solid surface such as an acrylic (Plexiglas) and stainless steel sheet and is compared with Newtonian droplets (water and glycerin). The plates of Plexiglas and stainless steel both have a hydrophilic surface. In this research, the Newtonian and non-Newtonian fluids droplets collapse at two heights of 27 and 47 cm from the dry solid surface and are examined in the range of Weber numbers 245≤We≤"538" . The purpose of this study is to investigate the effects of contact velocity on the spreading factor of non-Newtonian and Newtonian droplets during the collision. The results of this study show that with the growth of Weber number (increasing contact velocity), the maximum value and velocity of spreading and receding are increased for the Newtonian or non-Newtonian droplets. Also, with increasing the viscosity of droplets, the value and velocity of spreading and receding are decreased for the Newtonian and non-Newtonian droplets. By increasing the velocity of collision on the Plexiglasas surface (raising the Weber number) up to 32%, the maximum value of droplets spreading is increased 22, 31 and 20 percentage respectively for the fluids of Boger, water and glycerin.
S. Ghorbanzadeh , M. Nazari , M.m. Shahmardan , A. Hasannia, M. Nazari ,
Volume 19, Issue 4 (April 2019)
Abstract
In this paper, heat transfer and magnetic fields in a vacuum induction melting furnace have been studied numerically. To solve the coupled equations of thermal and magnetic induction heating, the finite element method has been used. An induction furnace model is simulated using an industrial geometry. The studies indicate that the effect of the geometry of the crucible and the coil on the melting time has not been thoroughly investigated and requires more in-depth studies. It is attempted to improve the shape of the induction furnace, so that in less time aluminum is melted in a small scale furnace. The effect of the diameter-to-height ratio of the crucible on the duration of melting has been investigated. By decreasing the diameter-to-height ratio, the temperature reaches melting temperature in a shorter time. The results show that for the diameter-to-height ratio of less than 0.4, there will not be a significant change at the average temperature. 10% reduction in the distance between the coils leads to an increase in the average temperature of the working material inside the furnace. With considering the constant density of the coil current and the constant induced current in the heated material, the effects of the number of coil turns on the temperature distribution and magnetic flux are investigated. In this way, the accuracy of the model is also checked by induction heating concepts. The effect of frequency on temperature has been investigated in different coil lengths. The results show that an increase of 4 times in the frequency caused an increase of 1.7 times in the average temperature.
M. Ghafarian Eidgahi Moghadam, M.m. Shahmardan , M. Norouzi,
Volume 19, Issue 4 (April 2019)
Abstract
Magneto-rheological damper is one of the most widely used mechanical equipment, which absorbs mechanical shocks by use of magnetic fluid and electrical coil in its structure. In this paper, for the first time, dissipative particle dynamics as a mesoscopic scale modeling method was used to simulate a magneto-rheological damper and its magnetic fluid. Data from 3 categories including magnetic fluids with brand names 122-EG, 132-DJ, and 140-CG have been used and effect of their physical properties on power of damping force have been investigated. Results of modeling show that by increasing shear rate of fluid, shear stress is first increased and, then, it is applied to a constant value, which results in a greater shear stress by applying a stronger magnetic field. It is also observed that, with increasing both maximum piston velocity and strength of magnetic field, maximum power of damping force increased, which in 140-CG is higher than the other fluids. Results of sensitivity analysis show that weight of magnetic particles and strength of dissipative forces have the greatest effect on damping force, in such a way that by increasing weight of magnetic particles and decreasing the dissipative force of particles, accumulation of magnetic particles decrease, so, increasing quality of damping. It was also found that 122-EG is more suitable than other types of magnetic fluids in forming standard magnetic particle chains, and provides a more favorable viscosity distribution for damping.
S.r. Kazemi Mazandarani, M. Farzaneh-Gord , M.m. Shahmardan ,
Volume 19, Issue 5 (May 2019)
Abstract
Prior to entering to the throttling valve of the City Gate Stations (CGS), high-pressure natural gas flow in pipelines is transmitted through Water Bath Indirect Heaters (WBIH), which is increasing its temperature to compensate for the temperature drop caused by the Joule-Thomson effect and preventing the occurrence of the hydration phenomenon, gas freezing, and subsequent blockage of the gas flow path. Because of feeding of processed gas of the network on a large scale, optimizing the WBIHs has a lot of significance. In the present study, each WBIH is simulated by a type of thermodynamic machine, consisting of two distinct thermal systems. According to the problem geometry and governing equations, the thermodynamic analysis of these two systems results in the formulation of a relationship between their thermal efficiencies together and the definition of a parameter was defined as the Thermodynamic Similarity Coefficient (TSC). Then, the results showed that always, a constant logarithmic relationship exists between of the Number of Heat Transfer Units (NTU) values difference of the fire tube and heat coil of the WBIHs with their TSC as well as a constant power relationship between their NTU values ratio with this coefficient too. Finally, by solving the equation system obtained from these two relations, it was possible to determine the optimal values of NTU for the fire tube and heat coil as functions of TSC of the WBIH and to achieve the relationship between their optimum geometric dimensions together in the most ideal heat transfer state with a maximum relative error of about 13%.
M. Yarahmadi, M.m. Shahmardan, M. Nazari,
Volume 20, Issue 9 (September 2020)
Abstract
The subcooled flow boiling happens when the bulk flow temperature and the interface temperature are lower and higher, respectively than the saturated temperature corresponding to the flow pressure. One way to increase the heat transfer mechanism is to use high porosity metal foams in the ducts, which have a high surface area to volume ratio that increases the heat transfer surface area and the heat transfer coefficient of the duct. In the current study, an experimental apparatus was constructed, and subcooled flow boiling in an annulus tube was investigated. The annulus tube is in the vertical direction, and the internal and external diameters are 50.7 and 70.6mm, respectively. The operating pressure was 1atm, and the working fluid was water. The metal foam used is nickel with 10ppi and a porosity of 95%. In this investigation, heat flux and mass flow rate effectiveness on the heat transfer coefficient are considered. The experiments were performed in the mass flow rate range of 0.012kg/s to 0.0286kg/s in which the flow consists of both forced convection and flow boiling. The mass flow reduction causes the heat transfer coefficient increment to 30% in subcooled boiling regions. The use of porous media also increases the subcooled flow boiling heat transfer coefficient up to 30%.