Mahdi Tahmaseiabdar, Gholam Hossein Liaghat, Hadi Shanazari, Amin Khodadadi, Homayoun Hadavinia, Abar Abotorabi,
Volume 15, Issue 9 (11-2015)
Abstract
Due to high hardness, low density and heat resistance, ceramics are widely used in armor applications and industry, thus, in this study, perforation process of projectile into ceramic targets is investigated analytically and numerically and a modified model is developed. In the analytical section, Woodward’s theory, one of the important theories in perforation process of projectile into ceramic targets, is investigated and some modifications are applied in Woodward’s model, hence the ballistic results of analytical method are improved and the modified model shows good agreement with the experimental results that in the analytical section, the modified model is based on Woodward’s model and modification of semi-angle of ceramic fracture cone, erosion, mushrooming and rigid from of projectile and also changes in yield strength of ceramic during perforation process, damage, are considered. In the numerical section, a finite element model is created using Ls-Dyna software and perforation process of projectile into Ceramic-Aluminum target is simulated. The results of the analytical method and numerical simulation are compared to the results of the other investigators and results of modified model show improvement in prediction of ballistic results.
Hadi Shanazari, Gholam Hossein Lighat, Saeed Feli,
Volume 16, Issue 10 (1-2017)
Abstract
In this paper, an analytical model has been developed for modeling high velocity impact on ceramic/nanocomposite targets. In this model, penetration resistance of ceramic is determined based on cavity expansion analysis and variables during perforation of projectile onto ceramic are considered. Also the force of ceramic-composite interface is modified. Ballistic performance of the ceramic/composite target is investigated with adding and dispersing of nano particles of zirconia (ZrO2) in the matrix of back up composite. Ballistic impact tests were performed to validate the analytical predictions. These tests were performed by firing 10 mm steel flat ended projectile onto ceramic/composite target. Front layer is alumina ceramic and composite laminates of back up made of E-glass/epoxy with and without nano-zirconia particle of 5 wt%. The effect of nano-zirconia dispersion in the matrix for different failure modes is discussed. Experimental results revealed an improvement in the ballistic performance of samples with nano-zirconia particle. The analytical predictions of ballistic limit velocity and residual velocity of projectile are found to be in good agreement with the experimental results.