Search published articles


Showing 4 results for Tabejamaat

M. Nozari, S. Tabejamaat, M. Aghayari, H. Sadeghzade,
Volume 20, Issue 7 (July 2020)
Abstract

Combustion chamber has a crucial role in gas turbines and has a significant effect on the pollution and efficiency of them. Due to the complicated flow in combustion chambers because of high turbulence intensity, flow mixing, and flame behavior, prediction of the performance of such chambers is very complicated. There is a vital need for experimental investigations to study and understand the flame behavior in combustors. This experimental study was performed using a can type combustion chamber and LPG fuel at atmospheric conditions. First, stability curve, temperature distribution in the combustion chamber, and its exit plane in 6 flow conditions and then flow behavior were evaluated. The pollution at the outlet was obtained in different conditions and equivalence ratios. The results show that the flame tends to go downstream of the combustion chamber when the fuel mass flow rate increases (or in other words, by increasing the equivalence ratio) in constant air mass flow rate and finally exits from the chamber. By increasing the air mass flow rate in constant fuel mass flow rate, CO pollution is increased, and NOx pollution is decreased.


Ali Zargarbashi, Sadegh Tabejamaat, Soroush Sarrafan Sadeghi, Soroush Sheykhbaglou,
Volume 20, Issue 12 (December 2020)
Abstract

In this paper, the experimental study of partially premixed combustion of methane and oxygen in a 5 mm mesoscale quartz reactor with 1 mm wall thickness and 5, 10, and 15 cm lengths. The partially premixed for 25%, 50%, and 75% mixing ratios paid. Experimental results including the factor of affecting flame regimes, formation range, flame dynamics, the outer wall temperature distribution of the reactor had been analyzing and reporting. The above tests were performing in an asymmetrically centered cylinder combustion chamber and a laminar flow regime. In most partial pre-mixing combustion experiments, the oscillation regime, which had an optimal heat distribution throughout the reactor, had been observed. The flame dynamics were more effect by changes in mixing ratio, reactor length, oxygen flow rate, and finally fuel flow rate (equivalence ratio). Also observed that by increasing the reactor length due to the appropriate time for homogenization of the mixture, differences in the flame formation interval were reducing in the different ratios of the pre-mixes.


Ali Zargarbashi, Soroush Sarrafan Sadeghi, Sadegh Tabejamaat,
Volume 22, Issue 4 (April 2022)
Abstract

An experimental study on the effects of methane-oxygen partially-premixed input flow characteristics in a mesoscale reactor with constant length and geometry was investigated in the present work. For this research, two partially-premixed ratios of 25% and 50% are considered. The reactor is mounted horizontally, made from quartz material and its geometric characteristics are internal diameter: 5 mm, wall thickness: 1 mm, and length: 10 cm. In this research, we have tried to determine the factors affecting flame regimes. The range of flame regimes, flame dynamics, the outer wall temperature distribution of the reactor, frequency, and oscillation of oscillating flames, along with the intensity of the Repetitive Extinction and ReIgnition (RERI) extinguishing sound, were analyzed and reported. This flame's dynamics are more affected by changes in mixing ratio, oxygen volume flow rate, and fuel volume flow rate, causing changes in inlet flow velocity and equivalence ratio, respectively. Examination of the results of acoustic oscillations indicates an increase in oscillating flame velocity with increasing volumetric flow and mixing ratio. Loud extinguishing sound of flames when quenching is caused by converting a portion of the thermal energy of the flame into sound in the flame arrestor and the acoustic vibration waves resulting from the extinguishing of the flame and the difference in gas velocity.

Majid Aghayari, Sadegh Tabejamaat,
Volume 22, Issue 7 (July 2022)
Abstract

In the design of the combustion chamber, various parameters should be considered. These parameters include uniform temperature distribution at the outlet of the chamber, more flame stability, lower pollution, higher combustion efficiency, lower wall temperature, and lower pressure drop in the chamber. Regarding to the complex condition of the flow in the combustion chamber due to the various effects of turbulence and mixing of flows as well as the behavior of turbulent flames, predicting the performance of flow in the combustion chambers is very complicated. In this paper, it is tried to study and optimize the combustion chamber of Amirkabir University of Technology in terms of swirler. It is done by using the numerical method and finally the selected swirler in the numerical method is tested in the experimental setup to investigate optimization method .According to the studies, swirler with an angle of 60 degrees, 12 blades, and a thickness of 0.75 mm is selected as the final case. In the experimental results, the amount of CO pollution has significantly reduced. The output temperature, the pattern factor and unburned hydrocarbon have reduced in the final case. However, the temperature uniformity inside the chamber has increased.


Page 1 from 1