Search published articles


Showing 2 results for Taghiabadi

F. Yousefi, R. Taghiabadi, S. Baghshahi,
Volume 19, Issue 9 (September 2019)
Abstract

Hypoeutectic Al-Ni alloys are extensively used in automotive and aerospace industries due to their excellent castability and appropriate high-temperature specific strength. The addition of Mn to the composition of these alloys promotes the formation of Mn-rich precipitates and improves their strength and hardness, especially at high temperatures. However, if the Mn content exceeds 2 wt. %, increasing the size and volume fraction of Mn-rich compounds adversely affects the mechanical properties, especially the ductility and toughness of the alloys. On this basis, the current study was aimed to control the negative impact of high Mn content on tensile properties of hypoeutectic Al-Ni alloys by increasing the solidification rate and friction stir processing. For this purpose, the Al-4Ni-4Mn samples, prepared under different solidification rates of 3.5 and 10.4 °C/s, were subjected to friction stir processing (12 mm/min, 1600 rpm). Microstructural characterization and image analysis results show the substantial refinement of Mn-rich particles and their distribution in the matrix, refinement of grains, and elimination of casting defects such as gas/shrinkage porosities and entrained oxide bifilms. According to the results, increasing the solidification rate and applying of friction stir processing improved the tensile strength, yield strength, fracture strain, toughness, and microhardness of alloy by 63, 55, 123, 188 and 58%, respectively.

Davood Yousefi, Reza Taghiabadi, M.h. Shaeri,
Volume 21, Issue 10 (October 2021)
Abstract

In this study, the effect of multidirectional forging (MDF) was studied on the microstructure and mechanical properties of Ti-modified SiP/ZA22 composite containing 4 and 8 wt. % Si. The forging process was performed at 100 °C by two and five passes. Based on the obtained results, Ti modification refined the coarse primary dendrites, and reduced the size of primary Si (SiP) particle as well as grains. Applying MDF also gradually eliminated the dendritic structure, promoted fine distribution of SiP particles, second phases, and porosities in the microstructure. According to the image analysis results, the average size of SiP particles in as-cast composite reduced from 25 and 30 μm to about 6 and 7 μm, respectively in 5-pass MDFed composites containing 4 and 8 wt. % Si. The mechanical properties results also showed work softening during the MDF where after two-pass MDF the hardness and tensile strength of the base sample reduced by 30 and 25%, while its elongation and toughness improved by 120 and 325%, respectively. In MDFed composites, the presence of SiP particles maintains the hardness and strength. According to the results, in the case of 2-pass MDFed composite containing 4 wt. % Si the hardness and tensile strength reduced by 18 and 2%, respectively, but the elongation and toughness increased by 25 and 175%, respectively.  

Page 1 from 1