Search published articles


Showing 7 results for Vakil-Tahami

Farid Vakil-Tahami, Mohammad Zehsaz, Arash Mohammad Alizadeh Fard,
Volume 14, Issue 12 (3-2015)
Abstract

In this paper the creep behavior of a functionally graded (FG) rotating disc made of Aluminum 6061 and Silicon Carbide is investigated and the optimum volume fraction of FG disc and its profile has been obtained. For this purpose, the temperature gradiant along the disc radius is obtained by solving the govering heat transfer differential equation. All the thermal properties of the material are assumed to be the function of temperature and volume fraction. To obtain material properties, two models of Mori-Tanaka and Hashin-Schtrickman are used. To validate the results, they are compared with those given in the literature. Two solution methods: semi-analytical and closed form are employed and the results are compared. The optimum design is carried out with one, and multi-objective methods which are based on genetic algorithm. The objectives are increasing the factor of safety, reducing the weight of the disc and reducing the range between minimum and maximum safety factors. The design variables are percentage of volume fraction, the power of material distribution formula, and the thickness of the disc. The results show that two solution methods compare well. Also, it has been shown that high fraction of Silicon Carbide in the outer side the disc provide optimum results. Also, contradiction of the objectives is reviled, hence the results are presented as Pareto front.
Farid Vakil-Tahami, Reza Hassannejad Qadim, Akbar Rasoulian,
Volume 14, Issue 16 (Forth Special Issue 2015)
Abstract

Nowadays, optimization is becoming one of the most important techniques in engineering and industry to provide competing products in design and manufacturing. Therefore, it is a necessity to search for optimum designs with productibility. In aerospace industry reducing weight and improving reliability of the products are major concerns. As regards the gearbox is one of the most important parts in the helicopter propulsion system, these objects should be more considered. However, most of the existing designs consider only one object, hence, it is vital to implement optimization techniques to include different objectives to improve the existing designs and provide optimum products. In this paper, optimum design parameters including module and face width of gears for the main gearbox of Sikorsky ASH-3D helicopter have been determined (modified) using single and multi-objective mixed discrete- continuous optimization method to minimize weight of the gearbox, increase the safety factor and reduce the difference between safety factors of different gears. The results show that the weight of the gears can be reduced by 27.24% comparing with the existing gearbox. The results of the multiobjective optimization have also been presented as Pareto front diagram wich can be used by the manufacturers to satisfy the prefered requiments.
Farid Vakil-Tahami, Reza Hassan Nejhad, Arash Mohammad Alizadeh Fard, Morteza Raminnia,
Volume 15, Issue 8 (10-2015)
Abstract

In this paper a method has been developed to obtain an optimum material distribution for a cylindrical shell with Functionally Graded (FG) material and additional piezoelectric outer layer. The objective of the optimization is to satisfy full stress loading criterion. For this purpose; firstly, a solution method has been outlined in which, the governing equations are developrd by combining First order Shear Deformation Theory (FSDT) and Maxwell equations, with the use of Hamilton principle. Dynamic analysis is a major concern in this solution method because of the significant dynamic displacements, strains and stresses due to the effect of moving load. Hence, the time dependent transient responses of the structure and stress distribution have been obtained. At the next stage, a methodology has been introduced to obtain the optimum material distribution. In this method, instead of using pre-assumed material distribution functions which impose limitations to the manufacturing of the shell and also to the optimization solution, control points with Hermite functions are used. The thickness of the shell and volume fraction of the FG material at these points have been regarded as optimization variables. The optimization method is based on the genetic algorithm and to reduce the solution time, calculations are carried out using parallel processing in four cores. The results show that the developed method is capable of analyzing the FG structures and provide optimum solution. The major advantage of this method is its flexibility in providing volume fraction distribution of the material.
Farid Vakil-Tahami, Akbar Rasoulian, Arash Mohammad Alizadeh Fard,
Volume 15, Issue 9 (11-2015)
Abstract

Creep behavior of butt-welded joints in pressurized steel pipes operating at high temperature is one of the major concerns in industry. The creep behavior of 1.25Cr0.5Mo weldment has been investigated in this paper. Three different layers: Base Metal (BM), Heat Affected Zone (HAZ) and Weld Metal (WM) have been considered and the creep behavior of each layer has been modeled using constitutive equations. Constitutive parameters have been determined using the results of uniaxial constant load creep tests. A numerical approach based on least square method has been used to calculate optimum values of the constitutive parameters. The results have been compared with those provided in the literature for different alloys and good agreement has been observed. Creep tests have been carried out at 30, 35, 40 and 50 MPa and temperature levels of 670, 700, 725, 750 and 800 °C. Specimens have been machined out from Base and Weld Metal. Since machining specimens with appropriate size from HAZ is impossible, a method is proposed to obtain constitutive parameters for this layer. This method is validated by comparing the constitutive parameters which have been calculated for WM with those obtained using creep tests. Micrographical and microhardness tests show that there are significant differences in the microstructure of the layers. Consequently, the creep behavior of layers is different. The results show that steady state creep strain rate for WM is higher than the rates for BM and HAZ; also at low stress levels, creep strain rate of HAZ is larger than BM.
Farid Vakil-Tahami, Sima Baheri Islami, Seyyed Saeed Sharifi, Afshin Abbasi, Peyman Majnoun,
Volume 16, Issue 1 (3-2016)
Abstract

Creep failure is one of the most common mechanisms which determine the life of mechanical components operating at high temperature. Gas turbine blades are among the components which operate at high temperature under mechanical loads. In new designs, cooling flow passes through the inner channels of the blade to decrease blade temperature. One of the main parameters of the cooling system is the coolant’s heat transfer coefficient. In this paper, the effect of wall roughness of the cooling channels and coolant’s specific humidity on the cooling heat transfer coefficient has been investigated. The blade body and cooling channels are regarded as a heat exchanger with a thermal barrier coating and convective- film cooling. For this purpose, the physical properties of the coolant have been considered as a function of temperature and humidity. Then, the influence of the channel’s roughness on the heat transfer coefficient has been investigated and an analytical method has been used to obtain the temperature distribution. The results show that in the rough channels, coolant receives more heat from the blade body and consequently decreases its temperature especially in the critical section. Also, it has been shown that with increasing humidity; the coolant temperature reduces along the blade span comparing with the case of using dry air and consequently, the blade metal temperature reduces with about 2.5 percent. It has been shown that by increasing coolant’s humidity and roughness of the channels in a reasonable range, blade’s creep lifetime can be increased by up to 3.18 times.
Farid Vakil-Tahami, Ali Ziaei Asl, Peyman Majnoun,
Volume 16, Issue 4 (6-2016)
Abstract

In this paper, experimental data have been used to develop a semi empirical relationship for double-ellipsoidal heat source to model the welding process of a T-shape fillet weld of carbon steel AISI 1020 and stainless steel 304. This model is used in a finite element based computer code to simulate the three dimensional welding process and obtain the temperature profile around the weldment. Experimental data in the form of temperature for certain points have been recorded during the welding process using a computerized data processing system which has been designed for this purpose. Also, the thickness of the weldment layers has been compared by observing their hardness and crystallography. By comparing experimental data with numerical result, the coefficient of the model has been determined using “model updating” process. The effects of material properties and welding parameters have been studied to insure the generality of the model. This model can be used to evaluate the quality of the welding and thickness of the heat affected zone as well as the risks during the welding process such as burn-through and hot cracking. The main advantage of this model is that the number of coefficients is reduced to only one parameter and the rest have been related to the physical and geometrical characteristics of the weld. Results of the numerical simulation obtained using this model show that the major factors which affect the temperature distribution around the weldment are material conductivity, plate thickness, input heating and welding speed.
Farid Vakil-Tahami, Mohammad Reza Khoshravan, Arash Moahammad Alizadeh Fard,
Volume 16, Issue 9 (11-2016)
Abstract

The main objective of this research is to employ Imperialist Competitive Algorithm (ICA) to determine the optimum condition for an FG cylindrical shell with outer piezoelectric layer. Design parameters in this problem are thickness and volume fraction of the material. The shell is subjected to outer radial moving load and internal pressurized fluid. To formulate the problem, First Order Shear Deformation theory and Maxwell’s equation have been combined to develop governing equations and by solving these equations using analytical-numerical methods, the dynamic deformation has been obtained. Then, by adopting displacement-strain and stress-strain relationships, distribution of the dynamic stresses within the shell has been calculated. Due to the moving of the external load, the use of dynamic analysis is necessary so that the dynamic and transient response is significant comparing with the static one. To validate the dynamic analysis, the results are compared with those provided in the literature based on other solution methods or experimental measurements. Finally, a computer code has been developed to link the dynamic solution method with the optimization algorithm based on ICA to obtain the optimum values of the design parameters. The major advantage of this method is using control points along the thickness to define volume fraction rather than using predefined functions which usually impose unnecessary restriction. The volume fraction between these control points is obtained by Hermite interpolation method. The results show the efficiency of the method and its major strength which is the flexibility and higher convergence rate to determine the optimum configuration.

Page 1 from 1