Search published articles


Showing 2 results for Zohoori

Aref Nazari, Aghil Yousefi Koma, Seyed Saeid Mohtasebi, Saeed Zohoori, Mahdi Safa,
Volume 17, Issue 2 (3-2017)
Abstract

Rotor dynamics is known as the study of vibrational behavior in axially symmetric linear rotating structures. Devices such as engines, turbines, compressors and generators are located in this category. Study of vibrational behavior of these structures in different rotational velocities yields to recognition of critical points and preventing failures, especially high cycle fatigue. The case study of the present paper is a bladed disk used in the first stage of compressor of a gas turbine engine. The material of machined integrated bladed disk is aluminum alloy. The simulations have been done by ANSYS finite element software. By using the cyclic symmetry module of ANSYS the nodal diameter mode shapes of structure have been obtained. In the next step, experimental modal analysis test has been done by measuring 58 points on the bladed disk and the nodal diameters have been obtained experimentally. Finally, experimental and simulation results have been compared to each other. The novelty of this paper is the experimental procedure of obtaining nodal diameter of a bladed disk, which is so useful in verification of numerical simulation.
P. Khoshrooz, M. Farahani, M. Safarabadi Farahani, S. Zohoori ,
Volume 19, Issue 9 (September 2019)
Abstract

Curing process of composites results in the formation of residual stress and distortion. According to costs of composites fabrication, simulation of the fabrication process in order to avoid wasting investment is important. A common and simple method of composite fabrication is hand lay-up. In this research plane stress due to temperature change of composite laminates has been investigated and its resultant curvature has been analyzed. So, two symmetric and un-symmetric laminates with eight plies are subjected to 100-degree centigrade temperature change and normal and shear stresses have been calculated. First, by classical lamination theory which is the most important theory in stress analysis of composites, mechanical properties of glass/epoxy composite with 70 percent volume fraction, temperature change and stacking sequence are input variables of the written program. Three in-plane stress component is read and the amount of curvature has achieved that shows it is negligible for the symmetric sample. To validate the residual stress field, finite element simulation for both samples has been done that resulted in finding the same results with negligible errors. Assumptions are considered in finite element modeling and classical lamination theory which result in deviation of outputs from reality. In spite of these assumptions, the thermal simulation of composite laminations in ABAQUS software can have the desired prediction of reality. The innovation of the research is the use of this software and the verification of code.
 



Page 1 from 1