Search published articles


Showing 2 results for zare Vamerzani

Mahmood Norouzi, Behrooz zare Vamerzani, Bahar Firoozabadi,
Volume 14, Issue 13 (First Special Issue 2015)
Abstract

In this paper, steady creeping motion of non-Newtonian falling drop through a viscous fluid is investigated analytically. Here, the Upper Convected Maxwell model (UCM) is used for drop phase and Newtonian model is considered for external fluid. The perturbation technique is used to solve both exterior and interior flows and Deborah number that indicated the elastic effect is considered as the perturbation parameter. The present solution is derived up to second order of perturbation parameter so the present solution has a suitable accuracy for drops that made from dilute polymeric solutions. We found that the Newtonian drop has a spherical shape during the creeping motion but the non-Newtonian drop loses this shape and takes an oblate form. By increasing the elastic effect, a dimple at the rear end of the drop is created and developed. Here, it is shown that the present results have more agreement with experimental data than the previous analytical studies. The origin of drop deformation is also considered and it is proofed that the elastic property of drop phase creates a concentrated normal stress at the rear end of the drop that causes the dimple shape in this region.
Majid Siavashi, Behrooz zare Vamerzani,
Volume 16, Issue 7 (9-2016)
Abstract

In this paper, the non-Newtonian immiscible two-phase polymer flow in a petroleum reservoir has been investigated numerically. The fluid flow in a porous medium is simulated as a compressible flow. The Carreau-Yasuda constitutive equation is employed as the model of non-Newtonian fluid. The IMPES method is used for numerical simulation, in which the pressure equation is discretized and solved by an implicit approach and the saturation equation is solved by an explicit method. Results reveal that zero-shear rate viscosity has a high impact on the sweep efficiency of the reservoir and also controls the channeling and viscous fingering effects. In addition increasing the viscosity of non-Newtonian fluid improves cumulative oil production and diminishes the viscous fingering phenomenon caused by injected fluid. The relaxation time of Carreau-Yasuda fluid, which is the elastic characteristic of the non-Newtonian fluid, for low permeability values cannot influence flow characteristics inside the reservoir, however for higher permeability values its effect becomes more sensible. Increasing the injection rates leads to the increase of fluid production, while the injection rate has an optimum range to reach the optimum oil production. In addition, the effect of variation of the injected fluid properties on the polymer breakthrough time has been investigated and results presented.

Page 1 from 1